

# MANUAL / FDV "IMP"



# Detta kvalitetssystem har utvecklats under många år och representerar det senaste inom högteknologisk ultraljudsmätning och ekobearbetning.

# INNEHÅLLSFÖRTECKNING

| Installation                                                   | 2  |
|----------------------------------------------------------------|----|
| Ståndarrörinstallation                                         | 3  |
| Kopplingsschema                                                | 3  |
| Motstånd i loopen, kabellängder                                | 5  |
| Underhåll                                                      | 5  |
| Knappar och display                                            | 6  |
| Programmering av nivåmätning IMP                               | 7  |
| Ändring av mA utområde                                         | 7  |
| Förklaring av begrepp                                          | 7  |
| Volymberäkning                                                 | 8  |
| Programmering av reläer                                        | 10 |
| Felsökning                                                     | 10 |
| Test av mÅ utgång                                              | 11 |
| Total återställning av alla parametrar till fabriksinställning | 11 |
| Protokoll: Inställningar i enheten                             | 12 |

# Installation

IMP nivåmätning matas med likström 11–36 volt DC. Strömförbrukningen är max 60 mA vid tre-trådsinkoppling.

All elektronisk utrustning är känslig för elektrostatiska stötar och höga strömmar vid t ex åska, se därför till att enheten är väl jordad och ev. skyddad med t ex överspänningsskydd.

## Tänk på detta vid montage

- underlaget bör vara fritt från vibrationer
- omgivningstemperaturen skall vara mellan -20°C och +65°C
- undvik att högspänningskablar och frekvensomvandlare finns i direkt närhet
- att givaren har så fritt "synfält" som möjligt
- IMP3 kall monterad minst 20 cm över maximal nivå, för IMP6 gäller 30 cm
- givaren skall monteras lodrätt mot målet
- åtkomst till display och knappar för programmering bör kunna ske enkelt
- vid montage i fläns, använd om möjligt en fläns av PVC och packning

# Dimensioner

#### IMP6 og IMP6





#### Ståndarrörsinstallation

Om enheten monteras i ståndarrör beakta att diametern är korrekt gentemot längden.



| Sensorer      |                |
|---------------|----------------|
| DN ståndarrör | Max längd (mm) |
| 80            | 220            |
| 100           | 280            |
| 150           | 420            |
| 200           | 560            |

Tillse också att den öppna änden på ståndarröret är fri från hinder. Om ståndarrör används som sträcker sig in i tanken bortom dödzonen skall änden kapas i 45°.



Maxnivån (100% av spannet) är inom dödzonen



Ståndarröret skall vara fritt från hinder



Fel dimension på ståndarröret

# Kopplingsschema

Kopplingsschema finns också under locket på enheten. IMP Lite har 2st kabelförskruvningar M16 för att säker – ställa IP-klassen.







#### Motstånd i loopen, kabellängder

Vid användande som 2-trådsmatad enhet kan max tilllåten kabelresistans beräknas från grafen nedan.

#### Exempel

Om IMP matas med 24V kopplat enligt 2-tråd är maximalt total kabelresistans 590. För en typisk 77/km kabel innebär detta en maximal kabellängd på 590/77 = 7,6 km, kom dock ihåg att detta är total resistans så resultaten skall divideras på 2 för att ge 3,8 km max distans.



Maximalt kabelmotstånd mot spänningsmatning vid 2-trådsinkoppling



Maximalt kabelmotstånd mot spänningsmatning vid 3-trådsinkoppling

#### Före uppstart av enheten kontrollera följande:

- att enheten är korrekt monterad
- att strömförsörjningen är korrekt inkopplad

# Underhåll

Enheten är underhållsfri. Vid ev. rengöring av enhet och givare använd en fuktig trasa, använd inte lösningsmedel!

## **Knappar och display**

I driftläge visar displayen som fabriksinställning distans. I programmeringsläge används displayen för att informera om parametrar och värden.

#### Driftläge

Driftläge används när IMP programmerad. Det är också det läge enheten återvänder till efter t ex ett strömavbrott. När IMP startas första gången visas avståndet från givaren till målet i meter i displayen. När programmering är gjord kommer ev. reläer att aktiveras vid sina av/på-punkter och enheten kommer att skicka mA signal.

#### Programmeringsläge

Programmeringsläge används för att sätta upp IMP för applikationen eller för att ändra redan satta värden. För detta används de fyra knapparna enligt nedan.





| Knapp | Driftläge                                | Programmeringsläge                                                                                                       |
|-------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| ESC   | Visar serienummer och<br>mjukvaruversion | Navigerar ut ur menysystemet och återgår till driftsläge<br>Används också för att sudda ut ett värde intryckt av misstag |
|       | Visar aktuell temperatur                 | Navigering i menysystemet och för att öka värden                                                                         |
| NER   | Visar aktuell ekostyrka                  | Navigering i menysystemet och för att minska värden                                                                      |
|       | Visar aktuell mA nivå                    | Bekräftar ett val t ex en meny eller ett parametervärde                                                                  |

#### Programmering av nivåmätning

Koppla in och strömsätt enheten. Vid start första gången visas i displayen avstånd från givare till målet (mätt i meter).

Tryck samtidigt [ESC] och [ENTER] Displayen visar kort "pass" och sedan "0000" Tryck kod [1997] Genom att använda [UPP] och [NER], och [ENTER] för att byta blinkande siffra [ESC] backar till föregående siffra När displayen visar 1997 [ENTER] Displayen visar "app" [ENTER] P100 visas [ENTER] Välj driftläge 1=distans, 2=nivå, 3=utrymme, 4=volym [ENTER] Displayen visar "stor" sedan P100 [UPP] till P104 [ENTER] Välj mätenhet, 1=meter, 2=cm, 3=mm, 4=feet, 5=inches [ENTER] Displayen visar "stor" sedan P104 [UPP] till P105 [ENTER] Sätt lägsta / O-nivå, från givarens undersida till O-nivå [ENTER] Displayen visar "stor" sedan P105 [UPP] till P106 [ENTER] Enheten visar aktuellt spann detta kan ändras här om så önskas, kan skaleras fritt under "LOOP" se nedan

Tryck [ESC] tills "run" visas [ENTER]

Klart, nu är enheten i drift, glöm inte att fyll i protokollet på sidan 12.

Reläer är ej programmerade, finns ej tillgängliga vid 2-trådsdrift.

#### Förklaring av begrepp

#### Ändring av mA utområde

mA-signalens utområde kan programmeras fritt utan att spannet förändras, detta görs under meny "LOOP".

# Tryck kod **[1997] [ENTER]** Tryck **[UPP]** eller **[NER]** till "LOOP" **[ENTER]** P 834 visas **[ENTER]** detta är den nivå mätt från O-punkt där 4 mA skall ges Ange önskad nivå **[ENTER]** Displayen visar "stor" sedan P834 **[UPP]** till P835 **[ENTER]** P 835 visas **[ENTER]** detta är den nivå mätt från O-punkt där 20 mA skall ges Ange önskad nivå **[ENTER]** mA spannet är nu satt Tryck **[ENTER]** till "driftläge.

Klart, nu är enheten i drift, glöm inte att fyll i protokollet på sidan 12.



# Volymberäkning

VM 9819 är utrustad med volymberäkning, detta innebär att den speciellt lämpar sig för tankar. Detta programmeras på samma sätt som ovan i meny "UoL" enligt följande parametrar. **Parameter P600** anger tankform enligt nedan.

| Tankform | P600 värde                                              | Dimensioner som krävs                                          |
|----------|---------------------------------------------------------|----------------------------------------------------------------|
|          | P600=0<br>Cylindrisk flat botten<br>(Default)           | Cylinder diameter                                              |
|          | P600=1<br>Rektangulär flat botten                       | Bredd och vidd                                                 |
|          | P600=2<br>Cylindrisk konisk bas                         | Cylinder diameter och<br>höjd på basen                         |
|          | P600=3<br>Rektangulär pyramidisk<br>bas                 | Bredd och vidd på rek-<br>tangulära delen och höjd<br>på basen |
|          | P600=4 Cylindrisk para-<br>bolisk bas                   | Cylinder diameter och<br>höjd på basen                         |
|          | P600=5<br>Cylindrisk halv sfär bas                      | Cylinder diameter                                              |
|          | P600=6<br>Cylindrisk flat lutande bas                   | Cylinder diameter och<br>höjd på basen                         |
|          | P600=7<br>Rektangulär flat lutande<br>bas               | Bredd och vidd på rek-<br>tangulära delen och höjd<br>på basen |
|          | P600=8<br>Horisontell cylinder med<br>flata ändar       | Cylinder diameter och<br>tank längd                            |
|          | P600=9<br>Horisontell cylinder med<br>paraboliska ändar | Cylinder diameter, längd<br>på en ändsektion och<br>tanklängd  |
|          | P600 = 10<br>Sfär                                       | Sfär diameter                                                  |
|          | P600 = 11<br>Linjär                                     | Inga dimensioner, nivå–<br>och volymbrytpunkter<br>används     |
|          | P600 = 12<br>Universal kurva                            | Inga dimensioner, nivå-<br>och volymbrytpunkter<br>används     |

# Parameter P601-603 anger dimensioner enligt nedan.

| Tankform                                                   | P601              | P602              | P603                   |
|------------------------------------------------------------|-------------------|-------------------|------------------------|
| P600=0<br>Cylindrisk flat botten<br>(Default)              | Cylinder diameter |                   |                        |
| P600=1<br>Rektangulär flat bot-<br>ten                     |                   | Vidd              | Bredd                  |
| P600=2<br>Cylindrisk konisk bas                            | Höjd på basen     | Cylinder diameter |                        |
| P600=3<br>Rektangulär pyrami-<br>disk bas                  | Höjd på basen     | Vidd              | Bredd                  |
| P600=4 Cylindrisk<br>parabolisk bas                        | Höjd på basen     | Cylinder diameter |                        |
| P600=5<br>Cylindrisk halv sfär<br>bas                      | Cylinder diameter |                   |                        |
| P600=6<br>Cylindrisk flat lutande<br>bas                   | Höjd på basen     | Cylinder diameter |                        |
| P600=7<br>Rektangulär flat<br>lutande bas                  | Höjd på basen     | Vidd              | Bredd                  |
| P600=8<br>Horisontell cylinder<br>med flata ändar          | Längd på cylinder | Cylinder diameter |                        |
| P600=9<br>Horisontell cylinder<br>med paraboliska<br>ändar | Längd på cylinder | Cylinder diameter | Längd på en ändsektion |
| P600 = 10<br>Sfär                                          | Sfär diameter     |                   |                        |

**Parameter P604** visar den maxvolym i m<sup>3</sup> som blivit beräknad.

OBS! Denna volym baserar sig på total möjlig volym mellan 0-punkt (P105) och 100% av spannet (P106). **Parameter P605** denna parameter väljer enhet för volym enligt nedan.

| Option                 | Beskrivning                         |
|------------------------|-------------------------------------|
| 0=Inga enheter         | Volym totaliseras i Inga<br>enheter |
| 1=Tons                 | Volym totaliseras i Tons            |
| 2=Tonnes               | Volym totaliseras i Tonnes          |
| 3=Kubikmeter (Default) | Volym totaliseras i Cubic<br>Metres |
| 4=Liter                | Volym totaliseras i i Litres        |
| 5=UK Gallons           | Volym totaliseras i UK Gallons      |
| 6=US Gallons           | Volym totaliseras i UK Gallons      |
| 7=Cubic Feet           | Volym totaliseras i Cubic Feet      |
| 8=Barrels              | Volym totaliseras i Barrels         |

**Parameter P606** denna parameter kan ange en korrektionsfaktor t ex densitet.

**Parameter P607** denna parameter anger beräknad volym P605 x P606. Volymen visad i vald enhet enligt P605.

Klart, nu är enheten i drift, glöm inte att fylla i "inställningar i enheten" på sidan 14.

**Parameter P608** Hastighetskompensering Med denna parameter kan justering av ultraljudets hastighet i andra medier justeras. Som fabriksinställning ligger 342,72 m/sek som är ljudets hastighet i luft 20°C. Här har vi valt att behålla de engelska handelsnamnen för att förvirring ej skall uppstå.

| Gas      | ljudhastighet |
|----------|---------------|
| Chlorine | 206 m/s       |
| Argon    | 308 m/s       |
| Oxygen   | 316 m/s       |
| Air      | 331,5 m/s     |
| Ammonia  | 415 m/s       |
| Methane  | 430 m/s       |
| Helium   | 435 m/s       |
| Neon     | 965 m/s       |

## Programmering av reläer

Endast vid 3-trådsinkoppling!

#### Tryck kod [1997] [ENTER]

Displayen visar "app" Tryck [UPP] eller [NER] till "rL" [ENTER] Displayen visar "P210" [ENTER] Välj 1 för alarm, 2 för kontroll [ENTER] [UPP] till P211 [ENTER] Välj alarmtyp: 1 för larm, 4 för ekobortfall [ENTER] [UPP] till P213 [ENTER] Ställ in önskad larmnivå, mätt från 0-punkt [ENTER] (denna parameter bestämmer till-punkten för larmet!)

Om relä 2 skall programmeras görs programmering lika som ovan dock med parameternummer P220, P221, P223, P224.

Efter eventuell inställning av reläer, tryck **[ESC]** till "driftläge".

Klart, nu är enheten i drift, glöm inte att fyll i protokollet på sidan 12.

#### Felsökning

| Symptom                                                              | Vad göra                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Displayen är blank,<br>givaren tickar inte.                          | Kontrollera inkoppling och strömförsörjning                                                                                                                                                                                                                                                          |
| Displayen visar "LOE".                                               | Inget giltigt eko tas emot<br>och enheten har nått felläge.<br>Kontrollera att mediats nivå<br>är inom mätområdet, givaren<br>är vinkelrät mot mediats yta                                                                                                                                           |
| Medianivån är kon-<br>stant fel med samma<br>mängd/mått.             | kontrollera att O-punkten<br>( <b>P105)</b> är korrekt program-<br>merad                                                                                                                                                                                                                             |
| Felaktig nivåvisning i<br>förhållande till mediats<br>verkliga nivå. | Mät verkligt avstånd från gi-<br>vare till yta. Gå in i program-<br>meringsläge och välj meny<br>"SyS1", gå till <b>P21</b> och tryck<br><b>[ENTER]</b> , mata in mätt av-<br>stånd, tryck <b>[ENTER]</b> , vänta<br>till "stor" visats och återgå<br>till driftläge. Displayen bör nu<br>visa rätt. |

## Test av mA utgång

l programmeringsläge = under kod [1997] [ENTER]

Välj "tESt" med piltangenterna **[ENTER]** Välj parameter P992. Den siffra du anger kommer att genereras av mA-ut – gången.

Simulering stegas med piltangenterna upp/ner vid manuell.

Testläge lämnas med [ESC]

#### Total återställning av alla parametrar till fabriksinställning

Denna parameter används t ex när enheten skall flyttas till annan applikation eller när enheten skall programmeras om helt.

Denna parameter återställer alla parametrar till fabriksinställning!

# Tryck kod [1997] [ENTER]

Välj meny "SyS1" **[ENTER]** Välj P930 **[ENTER]** Välj 0001 **[ENTER]** Displayen visar "stor" sedan P930 Tryck **[ESC]** till "driftläge" Programmera enheten till önskad funktion erhålles.

# Protokoll: Inställningar i enheten

Plats/Benämning ......



# Sigum Fagerberg AS

Årvollskogen 33, 1529 Moss Billingstadsletta 19b,1396 Billingstad Fax +47 69 35 55 31 www.sifag.no VAT.no. NO 856 326 942 MVA

Tel +47 41 50 11 00 post@sifag.no Bank acc. NO65 - 9490.05.41249

