DUCTILE IRON PIPE SYSTEMS for drinking water

KEULA
ALTECNO

Our new Manual shows the range of ductile iron pipes and fittings we supply for drinking water. It supersedes all previous issues.

This Manual is intended to provide planning and design engineers, purchasers and installers with a comprehensive overview of our product range and with information on the relevant standards.

All rights, including reprinting of extracts are reserved.

Illustrations, dimensions and weights are shown as a guide and the products supplied may differ slightly from them. In the interests of technical progress, we reserve the right to make changes and improvements to our products without prior notice.

January 2020

Your contacts

vonRoll hydro (deutschland) gmbh \& co. kg

Sophienstraße 52-54
35576 Wetzlar
Germany
T +496441492401
F +496441491455
www.vonroll-hydro.world

EBubinmenenudis

General list of contentsDUKTUS
Foreword 13
1 Advantages of ductile iron pipe systems 31
2 The positive locking system. 47
3 Fields of use of the positive locking system 105
4 The non-positive locking system 125
5 Flanged joints, pipes and fittings 191
6 Coatings 227
7 Accessories. 267
8 Pipeline components available from specialist suppliers. 279
9 Planning, transport, installation 289
List of contents 5
Foreword 13
1 Advantages of ductile iron pipe systems 31
2 The positive locking system 47
Introduction 48
2.1 Positive locking joints and pipes 51
BLS® joint DN 80 to DN 500 52
BLS ${ }^{\circledR}$ joint with clamping ring DN 80 to DN 500 53
BLS ${ }^{\oplus}$ pipe DN 80 to DN 500 54
BLS® joint DN 600 to DN 1000 56
BLS® pipe DN 600 to DN 1000 58
2.2 Fittings with positive locking joints 60
MMK 11 fittings -1114° double socket bends 62
MMK 22 fittings $-22^{1} 2^{\circ}$ double socket bends. 63
MMK 30 fittings -30° double socket bends 64
MMK 45 fittings -45° double socket bends 65
MMQ fittings -90° double socket bends 66
MK 11 and MK 22 fittings - $11 \frac{1}{4} 4^{\circ}$ and $221^{1} 2^{\circ}$ single socket bends 67
MK 30 and MK 45 fittings -30° and 45° single socket bends 68
MMB fittings - All-socket tees with 90° branch 69
MB fittings - Single socket tees with 90° socket branch 71
MMR fittings - Double socket tapers. 72
U fittings - Collars 73
F fittings - Flanged spigots 74
EU fittings - Flanged sockets 75
MMA fittings - Double socket tees with flanged branch 76
O fittings - Spigot end caps 78
P plugs - Socket plugs 79
GL fittings (GDR fittings) - Plain ended pipe pieces with two welded beads 80

DUKTUS
HAS fittings (A fittings) - House service connection fittings with outlet with 2 " female thread 81
ENH fittings -90° duckfoot bends for hydrants with male threaded outlet 82
EN fittings - 90° duckfoot bends. 83
Marking of fittings 84
2.3 Installation instructions - BLS ${ }^{\circledR}$ joints DN 80 to DN 500. 85
2.4 Installation instructions - BLS ${ }^{\circledR}$ joints DN 600 - DN 1000 95
3 Fields of use of the positive locking system 105
3.1 Trenchless installation techniques 107
3.2 Snow-making systems 110
3.3 Turbine pipelines 112
3.4 Fire fighting and fire extinguishing pipelines 114
3.5 Bridge pipelines and above-ground pipelines 117
3.6 Temporary pipelines (for replacement water supplies) 118
3.7 Floating-in 119
3.8 Crossings below waterways/culvert pipelines 120
3.9 Laying on steep slopes 121
3.10 Use in regions at risk of earthquakes or settlement 122
3.11 Urban water supply/replacement of concrete thrust blocks 124
4 The non-positive locking system 125
Introduction 126
4.1 Overview 128
4.2 TYTON ${ }^{\circledR}$ pipes 132
4.3 Fittings with non-positive locking joints 134
MMK 11 fittings $-11 \frac{1}{4}{ }^{\circ}$ double socket bends 136
MMK 22 fittings $-22^{1 / 2^{\circ}}$ double socket bends. 137
MMK 30 fittings -30° double socket bends 138
MMK 45 fittings -45° double socket bends 139
MMQ fittings -90° double socket bends 140
MK 11 fittings - 1114° single socket bends 141
MK 22 fittings - $22^{1 / 2} 2^{\circ}$ single socket bends 142
MK 30 fittings -30° single socket bends 143
MK 45 fittings -45° single socket bends 144
MQ fittings - 90° single socket bends 145
U fittings - Collars 146
MMB fittings - All-socket tees with 90° branch 147
MMC fittings - All-socket tees with 45° branch 148
MMR fittings - Double socket tapers. 150
O fittings - Spigot end caps 151
P plugs - Socket plugs 152
Screw rings for P socket plugs 153
PX fittings - Screw plugs for screwed socket joints 154
EU fittings - Flanged sockets 155
EN fittings - 90° duckfoot bends 157
MMA fittings - Double socket tees with flanged branch 158
Weld-on connections for ductile iron pipes 162
Marking of fittings 163
4.4 Installation instructions for TYTON ${ }^{\circledR}$ push-in joints 164
4.5 Installation instructions for BRS ${ }^{\circledR}$ push-in joints 171
4.6 Installation instructions for screwed socket joints 178
4.7 Installation instructions for bolted gland joints 185
5 Flanged joints, pipes and fittings 191
Introduction 192
5.1 Flanged joints 193
PN 10 flanged joints 193
PN 16 flanged joints 194
PN 25 flanged joints 195
PN 40 flanged joints 196

DUKTUS
5.2 Flanged pipes 197
With integral flanges 197
With screwed flanges 198
With puddle flange 199
5.3 Flanged fittings 200
FFK 11 fittings $-11 \frac{1}{4^{\circ}}$ double flanged bends 200
FFK 22 fittings $-221^{1} 2^{\circ}$ double flanged bends 201
FFK 30 fittings -30° double flanged bends 202
FFK 45 fittings -45° double flanged bends 203
Q fittings -90° double flanged bends 204
F fittings - Flanged spigots 205
T fittings - All flanged tees 206
TT fittings - All flanged crosses 209
FFR fittings - Double flanged tapers 211
FFRe fittings - Eccentric double flanged tapers 213
N fittings - Double flanged 90° duckfoot bends 215
X fittings - Blank flanges 216
DN 80 transition flanges - Flanges for PN 10 to PN 40 transitions 217
Marking of fittings 218
5.4 Installation instructions for flanged joints 219
5.5 Calculating vertical offsets when using flanged fittings 222
6 Coatings Structure, operation, fields of use, installation instructions. 227
Preliminary remarks 228
6.1. External coatings 229
Cement mortar coating (Duktus ZMU) 229
Zinc coating with finishing layer 240
Zinc-aluminium coating with finishing layer (Duktus Zinc Plus) 243
Thermally insulated ductile iron pipes and fittings (WKG) 246
6.2 Internal coatings 262
7 Accessories 267
Laying tools and other accessories for pipes and fittings with TYTON ${ }^{\circledR}$, BRS ${ }^{\circledR}$ or BLS ${ }^{\circledR}$ push-in joints 268
Laying tools and other accessories for fittings with screwed socket and bolted gland joints 273
Cutting disk for cement mortar coating with depth stop 275
Rubber sleeves for protecting cement mortar, for pipes with a cement mortar coating (ZMU) 276
One-piece shrink-on sleeves for DN 80 to DN 500 pipes 277
Shrink-on sleeves of tape material for DN 600 to DN 1000 pipes 278
8 Pipeline components available from specialist suppliers. 279
PN 10, PN 16 and PN 25 butterfly valves 280
F4 and F5 series gate valves PN 10 and PN 16 281
Gate valve with BLS® push-in joints 282
Butterfly valve with BLS ${ }^{\circledR}$ push-in joints 283
Underground hydrants with BLS ${ }^{\circledR}$ push-in joint 284
Post fire hydrants with BLS ${ }^{\oplus}$ push-in joint 285
PN 10, PN 16 and PN 25 lockable dismantling pieces 286
Anchoring clamps for applying retrospective restraint 287
"Huckenbeck" system transport clamps 288
9 Planning, transport, installation 289
9.1 Transport and storage 290
9.2 Pipeline trenches and bedding 294
9.3 Dimensioning of concrete thrust blocks. 296
9.4 Lengths of pipeline to be restrained 301
9.5 Pressure testing 316
The standard procedure 319
The shortened standard procedure 322

DUKTUS
9.6 Disinfection of drinking water pipelines 325
9.7 Hydraulic calculation of drinking water pipelines 333
Pressure loss table for DN 80 334
Pressure loss table for DN 100 336
Pressure loss table for DN 125 338
Pressure loss table for DN 150 341
Pressure loss table for DN 200 344
Pressure loss table for DN 250 346
Pressure loss table for DN 300 348
Pressure loss table for DN 400 350
Pressure loss table for DN 500 352
Pressure loss table for DN 600 354
Pressure loss table for DN 700 356
Pressure loss table for DN 800 358
Pressure loss table for DN 900 360
Pressure loss table for DN 1000 362
9.8 Cutting of pipes 364
9.9 Technical recommendations for manual metal arc welding 368

FOREWORD

DUKTUS

The story of the company

We are Duktus!
Duktus is a medium-sized enterprise consisting of the former pipe divisions of Buderus Giesserei Wetzlar GmbH, Buderus litinové systémy and Buderus Pipe Systems FZE.

Since 19 April 2010 we have been called Duktus. However, the story of our company goes back much further than that, to 1731 to be exact.

On 14 March 1731, Johann Wilhelm Buderus founded the Buderus company by taking over the lease of the Friedrichshütte foundry in Laubach in what was then the state of Hesse-Kassel. Pipes however were not produced at that time. It was in Wetzlar that the Buderus company's first cast iron pipe was cast, on 18 December 1901 in a newly built foundry, the Sophienhütte. This branch of the company would later be called Buderus Giesserei Wetzlar GmbH (BGW).

Following the takeover of Buderus AG by Robert Bosch GmbH in 2003, the latter group shed considerable parts of the company and sold them to a private equity fund in 2005. Three years later, this fund in turn sold BGW to their present owner. The company which this produced became a company specialising solely in the production of ductile iron pipes.

To underline the close association between the parts of the company, the decision was finally made to give them a new, shared, name and on 19 April 2010 we became ... Duktus.

Since February 2016 Duktus has been a member of the vonRoll hydro.
The focus of the group's development work is on the worldwide expansion of the systems business with innovative, high-quality products and services for infrastructures in the water and gas supply and sewage disposal sectors.
www.vonroll-hydro.world

DUKTUS

The story of the cast iron pipe

The story of the cast iron pipe begins back in the middle ages in the year 1455, when Count Johann IV of Nassau had a cast iron water pipeline laid for his castle in Dillenburg. The construction of the pipeline was still quite primitive; the wall thicknesses were very uneven and with their laying lengths of about a metre, the pipes were very manageable. Nevertheless, these pipes remained in use for more than 300 years, until the castle was destroyed in July 1760.

Betr.: Metterni Re: Metternich Water Pipeline
Im AnschluBa Besiohtigung der ioh Ihnen mit, d Stadt Koblenz is Brunnen, z.B. am gutem Trinkwasse

Following the inspection of the old Metternich Water Pipeline which took place some time ago, I would like to inform you that this water pipeline is the property of the Town of Koblenz and today is still supplying a number of public wells, e.g. at the Plan, Kastorhof and Klemensplatz, with good drinking water.

Letter of 1934 from the Lord Mayor of the town of Koblenz

DUKTUS

Over the following centuries, the production techniques developed only very slowly. The Metternich water pipeline for example, which was laid from 1783 to 1786, consisted of DN 80 pipes with a laying length of only 1.5 m . Given the average output of about 25 pipes a week of the foundry then operating (the Sayner Hütte) and the total length to be laid of 6 km , it is no wonder that the pipeline took 3 years to lay. As can be seen from the letter on the previous page, the pipeline was still in use in 1934 after 148 years in operation.
The year 1668 marked a minor milestone in the development of the cast iron pipe when Louis XIV had the famous fountains installed in the gardens of the Château de Versailles. It was for these that flanged pipes were used for the first time. The network of pipes was 40 km long and had a maximum nominal size of DN 500. The flanges had bolt holes cast into them and were sealed with inserted sheets of lead and copper. Pipes from the time of the Sun King are still in service today at Versailles.

Flanged pipes from the gardens of the Château de Versailles

DUKTUS

The three examples described above are impressive proof of what was already the legendary durability of cast iron pipes. Today, it is still this unrivalled long life that makes cast iron pipe systems an excellent economic proposition, because their economics depend, in the end and to a crucial degree, on the technical operating life that the material used for the pipes can be expected to have. Further details relating to the operating life of pipe systems can be found in the technical information given in DVGW W 401.
When industrialisation began in earnest in Germany in around 1900, it ushered in the laying of extensive gas and water supply networks in cities and large towns. This necessarily pushed the foundries and their capacities to develop at a very rapid rate. Carousels carrying upright sand moulds were introduced and these made it possible for larger quantities of cast iron pipes to be produced on an industrial scale. However, even with this the laying lengths were still limited and the pipe walls were still pretty uneven in thickness. This all changed in about 1925 with the introduction of the de Lavaud centrifugal casting process. This process has been used for producing cast iron pipes right up to the present time.

Carousel carrying upright sand moulds of about 1900

Centrifugal casting foundry of around 1930
Measured by the rate of development which existed in the previous 500 years, the years that followed saw an absolute flood of new developments in the types of joint and varying coating processes.
In around 1930, the screwed socket joint and the bolted gland joint were introduced and the pipes were asphalt coated internally and externally. The lead caulked joint which had been standard up till then disappeared from use.
Then, in the 60's, followed ductile cast iron and the introduction of the TYTON® joint which is still standard today. This new and easily assembled joint produced a major increase in the laying rate of cast iron pipes.

Ductile cast iron came into use in the mid-60's and a few years after this it was the trigger for the introduction of various coating systems. Since then, ductile iron pipes have been given a zinc coating and, initially, an additional bituminous finishing layer but subsequently an epoxy-based finishing layer. This was the period which also saw the development of the cement mortar coating and cement mortar lining.

DUKTUS

In the 1970's, the development of restrained push-in points gets underway. Initially designed as a replacement for concrete thrust blocks, these joints were soon being widely and successfully used for trenchless installation techniques. The BLS® system constitutes the current state of the art in the field of restrained push-in joints. Its distinguishing features are that it is very easy and quick to assemble but nevertheless has a very high load-bearing capacity.

vonRoll hydro (deutschland)
gmbh \& co. kg
vR production (DUKTUS) gmbh
Sophienstraße 52-54
35576 Wetzlar
Germany
Tel.: +49 6441/49-2401
Fax: +49 6441/49-1455

Employees: ~ 300
Total area: $252.000 \mathrm{~m}^{2}$
Smelting capacity: ~ 130,000 tonnes
Equipment:
Hot blast cupola furnace, annealing furnace, four 6 m centrifugal casting machines and an automatic painting line Products:
Pipes to EN 545 and EN 598 of nominal sizes from DN 80 to DN 1000 -
laying length 6 m

DUKTUS

Only materials of the very best quality are used as starting materials for the Duktus company's ductile iron pipes. What is used to obtain the pig iron is exclusively recycled material (iron and steel scrap). Not only the use of recycled material in production, but also their very long technical operating life of up to 140 years and the almost 100% recyclability which follows make ductile iron pipes particularly sustainable.
From production and use right through to re-use at the end of their long life, ductile iron pipes are remarkably economical and environment-friendly.

The scrap used is smelted with coke and other additives in a cupola furnace and is then fed off for treatment with magnesium. The pig iron and the treated iron are of course checked for their chemical composition and mechanical properties at short regular intervals.

What is now, after the treatment with magnesium, ductile cast iron is distributed to the various centrifugal casting machines. In these, the "pipe blanks" are cast by the de Lavaud process. Sand cores whose external configurations differ to suit the type of joint are inserted in the centrifugal casting mould (permanent mould) to create the internal contours of the socket. This is followed by annealing at $960^{\circ} \mathrm{C}$ which, in the end, gives the pipes their ductile properties.

The annealing furnace is followed by the fettling and testing line. It is here that the pipes get their zinc or zinc-aluminium coating, that their dimensions are checked and that they are tested for leaks at up to 50 bars. Samples of the material are taken at regular intervals and are checked to ensure that the prescribed parameters are being maintained.

The process continues with a welded bead being applied to the pipes which have BLS ${ }^{\circledR}$ joints before all the pipes are given a lining of cement mortar. This is done by method I under DIN 2880.
All that is now missing is the external coating. There are a number of options available in this case. The standard one is a finishing layer of epoxy. However, what can be applied to the zinc-coated pipe as an alternative is a cement mortar coating. Pipes having a coating of this kind, which is referred to in short by its German initials ZMU , can subsequently be used in soils with grain sizes of up to 100 mm or in soils of any desired corrosiveness, or can be installed using the trenchless method. What is more, the ZMU means that the expected technical operating life is lengthened to up to 140 years.

In the final part of the production process, the markings are applied, caps are fitted to drinking water pipes, the pipes are bundled, and a final quality control is carried out.

DUKTUS

Quality in the products it produces and satisfaction for its customers are the supreme corporate aims of Duktus. We operate a quality management system which is certified under EN ISO 9001. The products and production processes are regularly monitored by an accredited Testing Office.
As well as this, Duktus also operates an environmental management system which is certified under EN ISO 14001 and an energy management system which is certified under EN ISO 16001.
The quality management system is a wide-ranging one and begins with a chemical analysis of the raw materials and additives. This is because, when the molten iron is being smelted and treated, there are stringent requirements which have to be met with regard to the purity and consistency of the raw materials, the monitoring of the smelting process, the maintaining of the chemical composition, and the injection technique.
In the actual production of the pipes, allowance has to be made for the particular way in which ductile cast iron behaves as it solidifies and shrinks. When the annealed pipes are being checked, the characteristics of the material, which are laid down in EN 545 (for drinking water pipes) and EN 598 (for sewerage pipes), have to be monitored. The sockets and spigot ends of all the pipes are checked with limit gauges and their wallthickness is measured. All the pipes undergo a thorough visual inspection for internal and external flaws. The internal pressure test is carried out with water and in it the pipes have to withstand the test pressures which are laid down for the given type of pipe.

The cement mortar lining

The cement mortar lining of the pipes is also subject to stringent quality controls - as well as the raw materials and the fresh mortar being checked, the layer thickness also has to be as prescribed for the given nominal size.

The external coating

The external coating has to pass an equally stringent check. As standard, Duktus ductile iron pipes are given an external coating consisting of a zinc or zinc-aluminium coating and a finishing layer. Where pipes are to be used in highly corrosive or stony soils or for trenchless installation techniques, a high quality, 5 mm thick coating of plastic-modified cement mortar is also available. This coating is very strong mechanically and highly resistant to chemicals.
After marking, the pipes then undergo a final inspection. In the end-face of the socket there are parallel notch-like depressions some three millimetres deep which are an additional indication that the material is "ductile cast iron".

DUKTUS

TÜV
 PROFi
 cert

 CERTIFICATE

 CERTIFICATE

 Management system as per

 Management system as per}
DIN EN ISO 50001:2011

Evidence of conformity with the above standard(s) has been furnished

All the products of Duktus Rohrsysteme Wetzlar GmbH for the supply of drinking water are of course certified by the DVGW (German Technical and Scientific Association for Gas and Water). The basis for this certification is the DVGW's standards GW 337. All the materials used by us in manufacture which will subsequently come into contact with drinking water when pipes are in use, such as the lubricants, gaskets and cement mortar, have been tested to the appropriate DVGW standards or have approval under the German Federal Environment Agency's KTW guideline for organic materials in contact with drinking water. The possibility of the quality of drinking water being adversely affected by our products can therefore be ruled out.

All of our production and our in-house production controls and our products are subject to regular external monitoring.

In nominal sizes from DN 80 to DN 400, our ductile iron pipes with BLS ${ }^{\oplus}$ push-in joints also have FM approval. This allows them to be used for fire-fighting and fire-extinguishing systems.

Our fittings are coated internally and externally with an epoxy finishing layer to EN 14901. This coating also meets the stringent requirements laid down by the Gütegemeinschaft Schwerer Korrosionsschutz (GSK) (Quality Association for Heavy Duty Corrosion Protection). This means that our fittings to EN 545 can be installed in soils of any desired corrosiveness.

A selection of the most important certificates is available for downloading at www.vonroll-hydro.world.

Standard specifying texts for use in invitations to tender

German standard texts conforming to the current EN 545 for specifying our pipes and fittings in invitations to tender are available at www.vonroll-hydro.world in a variety of formats (Word, pdf and the German GAEB format).

DUKTUS

0
 Wix ahtheos
 Gütegemeinschaft Schwerer Korrosionsschutz von Anmaturen und Formstücken durch Pulverbeschichtung e. V.

Zertifikat

DVGW-Baumusterprüfzertifikat

ssung

ânan gemâß der GPB, for Armaturen und FormatUcke DVGW type examination certficatı

1 ADVANTAGES OF DUCTILE IRON PIPE SYSTEMS

What can be shown to be the first cast iron pipes were already being used in 1455 to supply water to the castle of Dillenburg and they remained in operation for more than 300 years.
Over the following centuries the development of cast iron as a material continued in order to meet the increasing demands that were being made on it. Since the 1960's, pipes have no longer been composed of the grey cast iron that had been the usual material up till then but of ductile cast iron, normally referred to simply as ductile iron. The word "ductile" comes from the Latin verb ducere, ductus = to lead or reshape and means able to be stretched or shaped into a new form. This indicates one of the significant properties of ductile iron, its ability to deform under load and hence to withstand very high loads originating from traffic and internal pressure for example.

Ductile iron is a tough iron-carbon material in which the volume of carbon exists predominantly in a free form as graphite. It differs from grey iron principally in the shape of the graphite particles.
Treatment of the molten iron with magnesium causes the carbon to crystallise in a largely spheroidal form as solidification takes place. This results in a considerable increase in strength and deformability compared with grey iron. The so-called spheroids of graphite have only a minor effect on the properties of the microstructure of the metal. In the grey iron which was the standard material in the past, the graphite took the form of flakes or lamellae which had a notch effect and thus reduced the relatively high strength of the microstructure. Whereas in cast iron with lamellar graphite the stress lines become highly concentrated at the tips of the graphite lamellae, in ductile iron they flow round the graphite which has separated out in spheroidal form almost undisrupted. This is why ductile iron is able to deform under load. From the point of view of stress analysis, ductile iron pipes and fittings are considered to be flexible tubes.

Path followed by the stress lines in cast iron with lamellar graphite (on the left) and with spheroidal graphite (on the right)

Characteristics of the material

Under EN 545, tensile strength and elongation after rupture can be tested on test bars.
The table below provides an overview of the characteristics of ductile iron

Characteristic	Units	Value
Tensile strength	$\mathrm{N} / \mathrm{mm}^{2}$	420
0.2 \% proof stress	$\mathrm{N} / \mathrm{mm}^{2}$	300
Elongation after rupture	$\%$	≥ 10
Compressive strength	$\mathrm{N} / \mathrm{mm}^{2}$	900
Modulus of elasticity	$\mathrm{N} / \mathrm{mm}^{2}$	170,000
Bursting strength	$\mathrm{N} / \mathrm{mm}^{2}$	300
Compressive strength at crown	$\mathrm{N} / \mathrm{mm}^{2}$	550
Longitudinal bending stiffness	$\mathrm{N} / \mathrm{mm}^{2}$	420
Oscillation bandwidth (DIN 50 100)	$\mathrm{N} / \mathrm{mm}^{2}$	135
Mean coefficient of thermal expansion	$\mathrm{m} / \mathrm{mK}^{2}$	10×10^{-6}
Thermal conductivity	$\mathrm{W} / \mathrm{cmK}_{2}$	0.42
Specific heat	$\mathrm{J} / \mathrm{gK}^{2}$	0.55

The mechanical properties of a metallic material like ductile iron remain the same throughout the whole of its operating life. That is why ductile iron pipes are still able to accept loads and are still safe even after decades.

Made in Germany

Our ductile iron pipes are produced solely in our factory in Wetzlar.
This ensures consistently high quality and short distances and times for delivery.
At the same time, it also safeguards jobs in Germany.

A tradition to live up to

We have been producing cast iron pipes since as long ago as 1901. Initially the pipes were produced by the sand casting process but since 1925 this has been done by the de Lavaud centrifugal casting process. Over the years and decades, the production processes, the types of internal and external protection for the pipes, and the joint systems have been developed and refined to an ever higher standard. Today we can look back on our more than 100 years of experience and can invest the knowledge it has given us in the ongoing development of our products and can thus pass on its benefits to our customers.

Service

Our company has its primary site in the heart of Europe and this not only enables us to keep the distances for transport short but also means that throughout the sales area our applications engineers and field sales staff can be at your service promptly to provide advice and assistance. We have an experienced team of technicians, engineers and salesmen ready to support you with help and advice.

Hygiene

One of the primary tasks of our civilisation is always to get water reliably to its destination. For generations now, our ductile iron pipes have set the standard for quality in water supply. Water is the most important nutrient on our planet and for this reason it has to be protected against contamination and the effects of chemicals while it is being transported through pipelines. Our ductile iron pipes are provided as standard with a cement mortar lining. Pipelines almost 100 years old which were lined with cement mortar have shown that for long life and effectiveness cement mortar serving as a mineral lining is superior to all the other materials that have been used to date. The cement mortar lining has both an active and a passive protective action. Its active protective action is based on an electrochemical process. Water penetrates into the pores in the cement mortar, dissolves free lime, and rises to a pH of more than 12. At a pH of this level it is impossible for cast iron to corrode. The passive action results from the physical separation which exists between the pipe's cast iron wall and the water The cement mortar lining consists of a mixture of sand, cement and water which is introduced into the pipe as the latter is rotating and which is then flung against the internal

DUKTUS
surface of the pipe by centrifugal force. The centrifuging process acts powerfully to drive out the water mechanically and compact the cement mortar tightly (water/cement ratio $>0.35: 1$). What this gives is firstly high strength for the cured cement and secondly extremely high resistance to any possible corrosive attack by water as a medium. For drinking water supply, the cement used is principally blast furnace cement or Portland cement.

Imperviousness to diffusion

Ductile iron drinking water pipes are sealed! And they are sealed in more than one way. Being an inorganic material, the cast iron of the pipe wall is sealed against (impervious to) diffusion. This means that nothing can penetrate through the pipe wall either from the inside outwards or vice versa. For drinking water, this means that no pollutants can find their way into the drinking water - an important matter especially when pipes are being laid in contaminated soils.

One pipe - many options

Our ductile iron pipes are versatile in the ways in which they can be used. There are two sophisticated and reliable restraint systems available in the form of our BLS ${ }^{\circledR}$ and BRS ${ }^{\circledR}$ push-in joint systems.
Whereas pipes with BRS ${ }^{\circledR}$ joints are used mainly in urban water supply and serve as a replacement for concrete thrust blocks in this application due to the restrained nature of the joints, there are almost no limits to what can be done with the BLS ${ }^{\circledR}$ system. Typical fields of application of the BLS ${ }^{\circledR}$ system are:

- replacement of concrete thrust blocks in conventional laying techniques
- bridge pipelines/above-ground pipelines
- temporary pipelines (for temporary water supplies)
- trenchless installation techniques (HDD, burst lining and press-pull techniques, pipe relining, floating-in, etc.)
- snow-making systems
- turbine pipelines
- laying on steep slopes
- fire-fighting and fire-extinguishing pipelines (FM Approval and German Federal Railways approval)
- use in regions at risk of earthquakes or settlement
- crossings below bodies of water/culvert pipelines
- building services
- urban water supply

Advantages

DUKTUS

A complete system

Also available to supplement our pipes is an extensive range of fittings for use both with TYTON ${ }^{\circledR}$ and BRS $^{\circledR}$ joints and with BLS ${ }^{\circledR}$ joints. Almost all the fittings available are listed in this Manual and others are available on enquiry. All our fittings are produced specifically for us by well-known German foundries.

Handling the ups and downs - pipeline stability

Because of their long laying length of 6 m , ductile iron pipes are insensitive to changes in position caused by settlement or by inconsistencies in the supporting layer produced. Because of their high longitudinal bending stiffness, pipes are able to bridge faults in the supporting layer without being overloaded and suffering damage as a result.
What is more, depending on the nominal size and the type of joint, our push-in joints can be deflected angularly by up to a maximum of 5°. For a 6 m long pipe for example, this is equal to a deflection of about 50 cm from the axis of the socket of the pipe or fitting laid previously. This means that even large areas of settlement cannot impair the leaktightness of the system and prevents unwanted restraints from being passed on from one pipe to the next.

In the event of settlement and hence changes in the length of the pipe string, the BLS ${ }^{\circledR}$ joint also safeguards pipes and fittings against longitudinal forces and stops them from being pulled apart.

Not to be underestimated - structural safety/laying on cradles carried on piles
Ductile iron pipes are equal to almost any load. For example, given the right nominal size, wall thickness and conditions of installation, our pipes can be laid with a height of cover of only 30 cm to withstand a traffic load conforming to the SLW 60 load model (heavy goods vehicle applying a total load of 600 kN). This is achieved by means of the high diametral stiffness and longitudinal bending stiffness.

Where elevated stress levels exist due to traffic, top cover, internal pressure, etc., it is possible for the wall thickness to be varied. From the point of view of stress analysis, ductile iron pipes can be considered a system which is flexible in bending. Evidence of suitability for use can be obtained from the allowable deformation or stresses and from the checks made on fatigue strength. A service we offer for this purpose is the drawing up of checkable pipe stress analyses by our Applications Engineering Division. Nor are there usually any stress-related problems with laying pipelines on cradles carried on piles. Because of the high load-bearing capacity of the pipes, only one cradle per pipe is needed in many cases.

Safety margins

When it is a question of supplying our most precious commodity, drinking water, safety should be a primary concern.
Without exception, all pipes are therefore tested for leaktightness in the factory.
Against internal pressure, ductile iron pipes have a safety factor of 3 .

DUKTUS

Coatings

Under EN 545, ductile iron pipes are provided with a metallic zinc or zinc-aluminium coating and a finishing layer. The mass of the zinc coating is $200 \mathrm{~g} / \mathrm{m}^{2}$ and that of the zinc-aluminium coating is $400 \mathrm{~g} / \mathrm{m}^{2}$. The finishing layer consists for example of blue two-component epoxy paint or of bitumen.

Under DIN 30675 Part 2, pipes with such a coating can be installed in soils of classes I (not aggressive to of low aggressiveness) and II (aggressive). If a pipe of this kind is bedded in an anode backfill, i.e. sand or gravel, it can even be laid in soils of class III (highly aggressive). The material used for the bedding may not exceed the following grain sizes:

- rounded material $0 / 32 \mathrm{~mm}$
- fragmented material 0/16 mm

If the pipe is to be laid directly in highly aggressive or stony soils up to a maximum grain size of 100 mm , we recommend a zinc coating plus a cement mortar coating (ZMU) to EN 15 542. A ductile iron pipe with a ZMU can be installed in almost any native soil without the soil having to be replaced. This means a considerable cost saving such as on dumping charges, purchase of replacement soil and transporting of bulk materials. If the native soil can be re-used as backfill, there is the added benefit that this avoids the often undesirable draining effect that a pipe trench filled with gravel has.

Pipes with a ZMU can also be used for trenchless installation techniques such for example as the burst lining, horizontal directional drilling, press-pull and rocket plough techniques. Extra-careful attention has to be paid to the socket joint in this case. The BLS ${ }^{\circledR}$ joint is what we offer for this application.

DUKTUS

Sustainability

Ductile cast iron pipes are long lived! Technical notice W401 issued by the Deutscher Verein des Gas- und Wasserfaches (German Technical and Scientific Association for Gas and Water) assesses their technical operating life at 100 to 140 years.

Cast iron pipes have been laid for more than 550 years for the purpose of transporting liquid media. Even back in those early days the potential the material had was recognised. It has been by the constant ongoing development of the production processes, the material itself and the joining techniques that such high standards of performance have been achieved.

Technical operating life by pipeline groups (from W 401)

This long life takes the strain off future rehabilitation budgets and the very low damage rates also help to make a saving on operating and maintenance costs.

The very long technical operating life that cast iron pipe systems enjoy has been shown by the experience of the past six centuries.
An impressive piece of proof this kind is provided by the drinking water pipeline of 1455 supplying the castle at Dillenburg. As described in a letter from the Historical Association of Dillenburg (see next page), this pipeline was in operation until it was destroyed in July 1760.

These and innumerable other examples provide impressive confirmation of the legendary long life of cast iron pipes.

Fiftorifther Verein
 Dillcuburg.

Deutscher Gußrohr-1 Köln

Die auf der beifi ten Gußröhren stamm störten Schlosses D: Gasrohrleitung im Ja_{a} gefunden. (Siehe Dön Wilhelmsturm-Museum!

Eiserne Wasserlei wurden erstmalig $145!$ Bauten des Erbauers d (1442-1475). Die Roght Johann VI. (1559-1606)

Die Leitung warbis Juli 1760 in Beputanang

[^0]
Economy

To assess the economy of pipeline systems, there is more than just the price of the pipe material that has to be taken into account.
What also have to be considered are the cost of installation, the damage rate and the technical operating life.

Ductile iron pipes are well known for the quick and easy way in which they can be laid and for how forgiving they are of mistakes in the laying. Our TYTON ${ }^{\circledR}$, BRS ${ }^{\circledR}$ and BLS ${ }^{\oplus}$ joint systems can be assembled in a very short time without the need for any special tools.

The damage statistics compiled by the DVGW (German Technical and Scientific Association for Gas and Water) show our ductile iron pipes to have one of the lowest damage rates (damaged points per km per year) of all materials. Coupled with a technical operating life of up to 140 years, this gives ductile iron pipe systems extremely good economic viability and thus lays the foundation for a sustainably economical drinking water supply system for future generations.

The following formula is one possible way of determining the approximate average annual cost of a pipeline in Euros per metre.
$\varnothing C=I+(1 / n+p / 200)$
$\varnothing C=$ average annual cost of the pipeline in Euros $/ \mathrm{m}$
I = capital investment cost (cost of production) in Euros/m
$\mathrm{n}=$ technical operating life in years
$p=$ interest rate in \%

From this formula it is very easy to see that the average annual cost of a pipeline depends principally on its technical operating life. Consequently, the high cost of production caused by the use of high grade materials for the pipeline works out to be perfectly economical over its lifetime. And this is true even without allowing for the advantages which ductile iron pipes have in terms of operating costs and costs arising from the frequency of damage.

DUKTUS

Environmentally friendly

Duktus ductile iron pipes are a model of friendliness to the environment. There are four factors which are the main reason for this:

1. We use only iron and steel scrap - i.e. recycled material - to obtain the molten pig iron. This not only saves valuable iron ore resources but also saves energy.
2. Because ductile iron pipes consist essentially of iron and cement mortar, they are almost 100\% recyclable.
3. The main waste products generated in our production, such as slag and sand, are used in cement works and in road-building and hence are recovered for re-use.
4. Ductile iron pipe systems have an extremely long technical operating life of up to 140 years. Calculated over their life span, this reduces to a minimum the CO_{2} and other emissions released in producing them.

DUKTUS

Quality

Quality in the products it produces and satisfaction for its customers are the supreme corporate aims of Duktus.
We operate a quality management system which is certified under EN ISO 9001 and an environmental management system which is certified under EN ISO 14 001. The products and production processes are regularly monitored by external materials testing institutions. To ensure that we will continue to live up to our high aspirations in terms of quality in future, we produce our pipes only in our factory in Wetzlar in Hesse in Germany. This ensures consistently high quality for our products and creates and safeguards jobs.

DUKTUS

Ductile iron pipe systems are technically unbeatable

- Internal and external coatings make them resistant to corrosion
- Safe external protection for all soils and installation techniques
- Linings resistant to corrosive media
- High static load-bearing capacity
- Resistant to fracture
- High safety margins (to cater for fluctuations in pressure and static overloads and to counter the effects of external factors)
- Patented restrained joints
- Able to be deflected angularly up to a maximum of 5°
- Suitable for trenchless installation techniques
- Leaktight against high internal pressures, negative pressures and high water tables
- Pipe material is impervious to diffusion
- Resistant to the penetration of roots
- Properties of material remain constant (for long-term strength)

Ductile iron pipe systems are economically superior

- Quick and easy installation saves on costs
- Slim pipe walls mean narrow trenches
- Excavated material can generally be re-used
- No welding needed (very simple push-in joints)
- Laying is possible in all weathers
- Ideal for trenchless laying
- Material is not affected by ageing
- Long technical operating life
- Fittings and accessories give a complete system
- Efficient and inexpensive planning with the help of the Duktus Applications Engineering Division
- Very low damage rate

Ductile iron pipe systems - consciously kind to the environment

- Material is inorganic
- Produced from recycled iron which is itself fully recyclable
- Meets the most stringent requirements for hygiene
- The sand used for the cement mortar lining is free of binders and chemical additives
- Pipe wall is totally impervious to diffusion
- Life of up to 140 years

2 THE POSITIVE LOCKING SYSTEM

DUKTUS

This chapter deals only with restrained push-in joints where the restraint is based on a positive locking interengagement.
Positive locking push-in joints can always be recognised by a welded bead on the spigot end and a retaining chamber. The positive locking interengagement between the welded bead and the retaining chamber is obtained by inserting locking segments. This enables forces to be transmitted mechanically between the spigot end and the socket of the next pipe or fitting.

An example of a positive locking joint (a BLS® joint)
Forces may be generated by internal pressure or external tractive forces. Allowable operating pressures (PFA) and allowable tractive forces are specified on the pages below as a function of nominal size. Higher pressures and tractive forces are possible; please check with our Applications Engineering Division.

Duktus supplies the following positive locking push-in joints for pipes and fittings:

- DN 80 to DN 500

This joint has been a success for decades and can be assembled with a TYTON ${ }^{\circledR}$ gasket. Depending on the nominal size and the nature of the application, locking is from 2 to 4 locks. It is notable principally for its easy and quick assembly, the reliable high operating pressures and tractive forces and the versatility with which it can be used. A clamping ring can be used on cut pipes. This enables the on-site application of a welded bead to be dispensed with in most cases.
Pipes with BLS ${ }^{\text {® }}$ joints are available in a laying length of 6 m . You will find further information on the BLS ${ }^{\circledR}$ joint from p. 51 on.

- DN 600 to DN 1000

It is also used a TYTON ${ }^{\circledR}$ gasket. The joint is locked by 9 to 14 locking segments which are inserted through openings in the socket and which are distributed round the circumference of the pipe.
Pipes with BLS ${ }^{\circledR}$ joints are available in a laying length of 6 m . You will find further information on the BLS ${ }^{\circledR}$ joint from p. 56 on.

Fields of use/advantages

There are almost no limits to the versatility with which pipes and fittings with BLS ${ }^{\circledR}$ joints can be used. The quick and easy assembly and the very high allowable operating pressures and tractive forces for which they can be relied on make them suitable for virtually any conceivable application in the laying of pressure pipelines (for water or sewage).

- urban water supply
- replacement of concrete thrust blocks in conventional open trench laying
- bridge pipelines/above-ground pipelines
- temporary pipelines (for temporary water supplies)
- trenchless installation techniques (HDD, burst lining and press-pull techniques, pipe relining, floating-in, etc.)
- snow-making systems
- turbine pipelines
- laying on steep slopes
- fire-fighting and fire-extinguishing pipelines (FM Approval and German Federal Railways approval)
- crossings below bodies of water/culvert pipelines
- building services
- use in regions at risk of earthquakes or settlement

DUKTUS

The very high angular deflectability of up to a maximum of 5° and the rotatability through 360° make these joints suitable even for the laying of complicated and demanding intersections.

PFA

Under EN 545, the allowable operating pressures (PFA) of the BLS® joints have to be stated in manufacturers' catalogues. See the following pages.

PMA $=1.2 \times$ PFA (allowable maximum operating pressure for a short period, e.g. the period of a pressure surge).

PEA $=1.2 \times$ PFA +5 (allowable site test pressure).
The classification into C classes under EN 545 does not apply to positive locking joints. The minimum wall thicknesses therefore differ from those in Table 17 of EN 545 (which applies to non-restrained joints).

Compatibility

There is no compatibility with the positive locking systems used by other manufacturers. For possible solutions in this regard, please get in touch with our Applications Engineering Division.

E-mail address: support@vonroll-hydro.world

Clamping ring

The use of clamping rings is possible in the majority of cases on pipes of nominal sizes from DN 80 to DN 500. For details of the fields of use of the rings see p. 53 and for installation instructions see p. 88 on. By using clamping rings it is possible to dispense with the retrospective application of welded beads to pipes which are cut on site.

Overview

DN 80 to DN 500

BLS ${ }^{\circledR}$

DN 600 to DN 1000

| DN | PFA ${ }^{11}[$ bar] | Allowable tractive force ${ }^{3)}$
 $[\mathrm{kN}]$ | Max. angular deflection [] |
| :---: | :---: | :---: | :---: |$|$| 115 |
| :---: |
| $80^{2)}$ |

1) PFA: allowable operating pressure; PMA $=1.2 \times P F A ; P E A=1.2 \times P F A+5-$ higher PFA's on enquiry, 2) Wall-thickness class K10 under EN $545: 2006$; 3) DN 80 to DN 250 with high-pressure lock - higher tractive forces on enquiry

BLS ${ }^{\circledR}$ joint with clamping ring DN 80 to DN 500

Notes on the use of BLS ${ }^{\circledR}$ joints

- trenchless installation of DN 80 to DN 250 size pipes only with high-pressure lock
- for installation instructions see p. 85
- higher pressures are possible, e. g. for snow-making systems or turbine pipelines

Retaining chamber

Notes on the use of clamping rings

- as a replacement for the welded bead, e.g. on pipes cut on site
- up to PFA of 16 bars in double socket bends, socket spigot-bends, 90° flange socket duckfoot bends and 90° duckfoot bends with side outlets; higher PFA's on enquiry
- not in above-ground pipelines or buried pipelines subject to pulsating pressures
- not in trenchless installation techniques
- tightening torque of bolts: see marker tag
- for installation instructions see p. 88

DN	Dimensions ${ }^{11}$ [mm]						Weight [kg]				PFA ${ }^{2 /}$ [bar]			Number of locks ${ }^{3)}$	Allowable tractive force ${ }^{4)}[\mathrm{kN}]$	Max. angular deflection [${ }^{\circ}$]	$\begin{gathered} \mathrm{Min} \text {. } \\ \text { radius }^{5)}[\mathrm{m}] \end{gathered}$	Assembly time ${ }^{\text {6) }}$ [min]
	d_{1}	D	t	L	a	b	Set of locks	Highpressure lock	Clamping ring	Gasket	Without high-pressure lock	With highpressure lock	Clamping ring					
80	98 ${ }_{-2.7}^{+1}$	156	127	86	8	5	0.4	0.3	0.9	0.13	100	110	45	2	115	5	69	5
100	$118{ }_{-2.8}^{\text {+1 }}$	182	135	91	8	5	0.4	0.4	1.0	0.16	75	100	45	2	150	5	69	5
125	$144_{-2.8}^{\text {+1 }}$	206	143	96	8	5	0.6	0.5	1.4	0.19	63	100	45	2	225	5	69	5
150	$170{ }_{-2,29}$	239	150	101	8	5	0.8	0.6	1.7	0.22	63	75	45	2	240	5	69	5
200	$222{ }^{+1}{ }^{-3.0}$	293	160	106	9	5,5	1.1	0.8	2.2	0.37	42	63	45	2	350	4	86	6
250	$274{ }^{+1}{ }^{-1.1}$	357	165	106	9	5,5	1.5	1.2	2.7	0.48	40	44	45	2	375	4	86	7
300	$326{ }_{-3.3}$	410	170	106	9	5,5	2.7	-	3.6	0.67	40	-	30	4	380	4	86	8
400	$429{ }^{+1}{ }_{-3.5}$	521	190	115	10	6	4.4	-	6.0	1.1	30	-	30	4	650	3	115	10
500	$532{ }_{-3.8}^{+1}$	636	200	120	10	6	5.5	-	7.2	1.6	30	-	30	4	860	3	115	12

[^1] DN 250 sizes
4) Higher tractive forces on enquiry, 5) Min. radius of curves (6 m pipe), which results from the angular deflection possible at the sockets - applies to both open trench and trenchless laying 6) Approx. assembly time of the joint not including any protection it may be given

External coatings

- Cement mortar coating (Duktus ZMU)
- Zinc coating with finishing layer
- Zinc-aluminium coating with finishing layer (Zinc PLUS coating)
- WKG insulation
- ZMU PLUS cement mortar coating

Internal coatings

- Blast furnace cement
- High-alumina cement

For notes on the fields of use of the
coatings see chapter 6

DN	Dimensions [mm] ${ }^{\text {4) }}$			Total weight [kg]		PFA ${ }^{11}$ [bar]			Number of locks ${ }^{5)}$	Allowable tractive force ${ }^{6)}$ [kN]	Max. angular deflection []	Min. radius ${ }^{7 /}$ [m]	Assembly time ${ }^{\text {8) }}$ [min]
	S_{1} Ductile iron	S_{2} Cement mortar lining	S_{3} Cement mortar coating	pipe ${ }^{2)}$	pipe + cement mortar coating ${ }^{3)}$	Without high-pressure lock	With highpressure lock	Clamping ring ${ }^{\text {9 }}$					
80	4.7	4	5	96.7	116.2	100	110	45	2	115	5	69	5
100	4.7	4	5	120.3	144.3	75	100	45	2	150	5	69	5
125	4.8	4	5	156.4	184.4	63	100	45	2	225	5	69	5
150	4.7	4	5	192.0	225.0	63	75^{10}	45	2	240	5	69	5
200	4.8	4	5	248.3	291.3	42	63	45	2	350	4	86	6
250	5.2	4	5	330.3	382.3	40	44	45	2	375	4	86	7
300	5.6	4	5	424.9	487.9	40	-	30	4	380	4	86	8
400	6.4	5	5	624.9	706.9	30	-	30	4	650	3	115	10
500	7.2	5	5	839.9	940.9	30	-	30	4	860	3	115	12

[^2]Retaining chamber
 or metal clip
(included in scope of supply)

Notes on the use of BLS ${ }^{\circledR}$ joints

- trenchless installation only with metal clips
- for installation instructions see p. 94
- higher pressures are possible, e. g. for snow-making systems or turbine pipelines

DN	Dimensions [mm] ${ }^{\text {1) }}$						Weight [kg]		Number of locks	PFA ${ }^{2)}$ [bar]	Allowable tractive force ${ }^{3)}[\mathrm{kN}]$	Max. angular deflection [${ }^{\circ}$]	$\begin{gathered} \text { Min. } \\ \text { radius }{ }^{4)}[\mathrm{m}] \end{gathered}$	Assembly time ${ }^{5)}$ [min]
	d_{1}	D	t	L	a	b	Set of locks	Gasket						
600	$635{ }_{-4,0}^{1+}$	732	175	116	9	6	9	2.3	9	32	1,525	2.0	172	15
700	$738{ }_{-1.3}^{+1}$	849	197	134	9	6	11	4.3	10	25	1,650	1.5	230	16
800	$842{ }_{-1.5}^{1}$	960	209	143	9	6	14	5.2	10	16/25 ${ }^{\text {6) }}$	1,460	1.5	230	17
900	$945{ }_{-4.8}^{+1}$	1,073	221	149	9	6	13	6.3	13	16/25 ${ }^{\text {6 }}$	1,845	1.5	230	18
1000	1,048 +5.0.0	1,188	233	159	9	6	16	8.3	14	10/25 ${ }^{\text {6) }}$	1,560	1.5	230	20

[^3]4) Min. radius of curves. which results from the angular deflection possible at the sockets - applies to both open trench and trenchless laying. 5) Approx. assembly time of the joint. not including any protection it may be given. 6) Wall-thickness class K 10 under EN 545:2006

Internal coatings

- Blast furnace cement
- High-alumina cement

For notes on the fields of use of the coatings see chapter 6

DN	Dimensions [mm] ${ }^{\text {4 }}$			Weight [kg]		Number of locks	PFA ${ }^{11}$ [bar]	Allowable tractive force ${ }^{55}[\mathrm{kN}]$	Max. angular deflection [${ }^{\circ}$]	Minimum radius ${ }^{6}$ [$[\mathrm{m}]$	Assembly time ${ }^{7)}$ [min]
	S_{1}	Cement mortar lining S_{2}	Cement mortar coating S_{3}	6 m pipe ${ }^{27}$	6 m pipe + cement mortar coating ${ }^{3)}$						
600	8.0	5	5	1,118.6	1,239.6	9	32	1,525	2.0	172	15
700	8.8	6	5	1,410.1	1,550.1	10	25	1,650	1.5	230	16
800	9.6	6	5	1,768.0	1,928.0	10	16/25 ${ }^{8)}$	1,460	1.5	230	17
900	10.4	6	5	2,131.3	2,310.3	13	16/25 ${ }^{\text {8) }}$	1,845	1.5	230	18
1000	11.2	6	5	2,524.4	2,723.4	14	10/25 ${ }^{8)}$	1,560	1.5	230	20

1) PFA: allowable operating pressure; PMA $=1.2 \times$ PFA; PEA $=1.2 \times$ PFA $+5-$ higher PFA's on enquiry, 2) Theoretical weight per pipe inc. cement mortar lining, zinc (zinc-aluminium) and epoxy finishing layer, 3) Theoretical weight per pipe inc. cement mortar lining \& coating and zinc, 4) $\mathrm{S}_{1}=$ min. dimension, $\mathrm{s}_{2} / \mathrm{s}_{3}=$ nominal dimensions. Tolerances are possible
2) Higher tractive forces on enquiry, 6) Min. radius of curves, which results from the angular deflection possible at the sockets - applies to both open trench and trenchless laying, 7) Approx. assembly time of the joint not including any protection it may be given, 8) Wall-thickness class K 10 under EN 545:2006

2.2 Fittings with positive locking joints

DUKTUS

Compatibility

There is no compatibility with positive locking systems used by other manufacturers.
For possible solutions in this regard, please get in touch with our Applications
Engineering Division.
E-mail address: support@vonroll-hydro.world

Laying lengths

Except where otherwise noted, the laying lengths L_{u} of fittings conform to the A series in EN 545.

Flanged fittings (see chapter 5)
When ordering flanged fittings, it is essential to give the PN pressure rating required. Accessories such as hex-head bolts, nuts, washers and gaskets must be obtained from specialist suppliers.

Coating

Except where otherwise specified, all the fittings shown below are provided internally and externally with an epoxy coating at least $250 \mu \mathrm{~m}$ thick.
The coating complies with EN 14901 and meets the requirements of the Quality Association for the Heavy Duty Corrosion Protection of Powder Coated Valves and Fittings (GSK).
All fittings to EN 545, Annex D.2.3., can thus be installed in soils of any desired corrosiveness.

For notes on the fields of use of the coating see chapter 6.

SCHWERER KORROSIONSSCHUTZ VON ARMATUREN UND FORMSTÜCKEN

DUKTUS

Allowable operating pressure (PFA)

(except where otherwise stated)

DN	PFA [bar]	
	BLS®	Flanged
80-250	100	$P F A=P N$
300	85	
400	30	
500	30	
600	40	
700	25	
800	25	
900	25	
1000	25	

- PFA: maximum allowable operating pressure in bars
- PMA = $1.2 \times$ PFA (allowable maximum operating pressure for a short period, e. g. the period of a pressure surge)
- PEA $=1.2 \times$ PFA +5 (allowable site test pressure)

Scope of supply

The fittings supplied by Duktus include all the gaskets, locks and other securing components required for all the sockets. For flanged joints, the gaskets, bolts, nuts and washers are not included in the scope of supply.

MMK 11 fittings
$111 / 4^{\circ}$ double socket bends
to EN 545

DN	Dimensions [mm] L_{u}	PFA [bar]	Weight [kg] ~
BLS ${ }^{\text {® }}$			
80	30	100	10.1
100	30		14
125	35		18.6
150	35		23.3
200	40		38.2
250	50		52.3
300	55	85	70.4
400	65	30	116
500	75		171.5
600	85	40	186
700	95	25	277
800	110		378
900	120		532
1000	130		614

MMK 22 fittings
$221 / 2^{\circ}$ double socket bends
to EN 545
$)$

DN	Dimensions [mm] L_{u}	PFA [bar]	Weight [kg] ~
BLS ${ }^{\text {® }}$			
80	40	100	10.2
100	40		14.3
125	50		19.4
150	55		24.3
200	65		39.2
250	75		56.9
300	85	85	78.6
400	110	30	125.5
500	130		197
600	150	40	215.5
700	175	25	320
800	195		458
900	220		594
1000	240		723

MMK 30 fittings
30° double socket bends
to DIN 28650
$\mathfrak{\sim}$

DN	Dimensions [mm] L_{u}	PFA [bar]	Weight [kg] ~
BLS ${ }^{\text {® }}$			
80	45	100	10.4
100	50		14.7
125	55		20.3
150	65		25.2
200	80		41.4
250	95		59.3
300	110	85	79.9
400	140	30	137
500	170		205.5
600	200	40	230
700	230	25	333
800	260		473
900	290		635
1000	320		809

MMK 45 fittings
45° double socket bends
to EN 545

DN	Dimensions [mm] L_{u}	PFA [bar]	Weight [kg] ~
BLS ${ }^{\text {® }}$			
80	55	100	11
100	65		14.7
125	75		20.8
150	85		26.3
200	110		41.5
250	130		65.1
300	150	85	86.4
400	195	30	149.5
500	240		227
600	285	40	261
700	330	25	376
800	370		548
900	415		716
1000	460		879

MMQ fittings
90° double socket bends
to EN 545

r

DN	Dimensions [mm] L_{u}	PFA [bar]	Weight [kg] ~
BLS ${ }^{\text {® }}$			
80	100	100	11.6
100	120		15.9
125	145		22.4
150	170		28.9
200	220		55.1
250	270		76
300	320	85	94.5
400	430	30	200.5

MK 11 and MK 22 fittings
$111 / 4^{\circ}$ and 2212° single socket bends
to manufacturer's standard

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	I_{u}	L_{u}		
BLS ${ }^{\text {® }}$, $\alpha=1114^{\circ}$				
80	30	175	100	8.4
100	30	185		11.1
125	35	200		15.1
150	35	210		20.1
200	40	230		32.7
250	50	250		51
300	55	270	85	71
400	65	375	63	125
500	75	405	50	220

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	I_{u}	L_{u}		
BLS ${ }^{\text {® }} ; \alpha^{1}=22^{1 / 2^{\circ}}$				
80	40	185	100	8.7
100	40	195		11.6
125	50	215		15.9
150	55	230		21.5
200	65	255		35.3
250	75	275		53
300	85	300	85	73
400	110	420	63	138.8
500	130	460	50	220

MK 30 and MK 45 fittings
30° and 45° single socket bends
to manufacturer's standard
DUKTUS
2

| DN | Dimensions $[\mathrm{mm}]$ | | | PFA [bar] |
| :---: | :---: | :---: | :---: | :---: | Weight [kg] ~

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	I_{u}	L_{u}		
BLS ${ }^{\text {® }}$, $\alpha=45^{\circ}$				
80	55	200	100	9.1
100	65	220		12.3
125	75	240		17
150	85	260		24.2
200	110	300		39.7
250	130	335		60.5
300	150	365	85	87.3

MMB fittings
All-socket tees with 90° branch
to EN 545

DN	dn	Dimensions [mm]		PFA [bar]	Weight [kg] ~
		L_{u}	I_{u}		
BLS ${ }^{\text {® }}$					
80	80	170	85	100	16.1
100	80	170	95		20.0
	100	190	95		22.4
125	80	170	105		25.1
	100	195	110		28.1
	125	225	110		31.0
150	80	170	120		33.6
	100	195	120		34.5
	125	255	125		39.0
	150	255	125		41.1
200	80	175	145		46.2
	100	200	145		47.3
	125	255	145		50.0
	150	255	150		54.3
	200	315	155		63.1
250	80	180	170		72.0
	100	200	170		63.9
	125	230	175		78.0
	150	260	175		70.6
	200	315	180		77.8
	250	375	190		89.1

1

DN	dn	Dimensions [mm]		PFA [bar]	Weight [kg] ~
		L_{u}	I_{u}		
BLS ${ }^{\text {® }}$					
300	80	180	195	85	93.0
	100	205	195		80.2
	150	260	200		88.6
	200	320	205		96.6
	300	435	220		127.4
400*	400	560	280	30	236.0
500*	500	800	400		396.8

[^4]
MB-fittings

Single socket tees with 90° socket branch
to manufacturer's standard

DN	dn	Dimensions [mm]		PFA [bar]	Weight [kg] ~
		L_{u}	I_{u}		
BLS ${ }^{\text {® }}$					
400	80	680	270	63	179.5
	300	680	270		211.5

MMR fittings
Double socket tapers
to EN 545

DN	dn	$L_{\text {U }}$ [mm]	PFA [bar]	Weight [kg] ~
BLS ${ }^{\text {® }}$				
100	80	90	100	12.3
125	80	140		15.9
125	100	100		16.7
150	80	190		19.9
	100	150		20.8
	125	100		21.0
200	100	250		29.6
	150	150		30.4
250	150	250		45.3
	200	150		46.7
300	150	350	85	57.0
	200	250		58.9
	250	150		62.8
400*	300	260	30	111.0
500*	400	260		156.0

[^5]
U fittings

Collars
to EN 545

DN	L. $[\mathrm{mm}]$	B [mm]	PFA [bar]	Weight [kg] ~
BLS ${ }^{\text {® }}$				
80	160	415	100	13.4
100	160	430		16.0
125	175	460		24.0
150	180	480		30.5
200	180	500		45.5
250	190	520		66.5
300	200	540	85	83.5
400	210	590	30	115.0
500	220	720		210.0

There are cases where collars with BLS ${ }^{\circledR}$ joints cannot be fully slid on. They must be used only with TYTON ${ }^{\circledR}$ gaskets.

DUKTUS

DN	L [mm]	Weight [kg]					
		PN 10	PN 16	PN 25	PN 40	PN 63	PN 100
BLS ${ }^{\text {® }}$							
80	350	7.5				11.9	11.2
100	360	8.5		10.4		14.1	15.7
125	370	12.4		13.1	14.3	20.0	22.8
150	380	19.3		21.0	21.0	31.9	28.0
200	400	25.2	25.2	26.0	30.8	46.6	55.4
250	420	35.1	35.2	37.7	45.4	-	-
300	440	46.0	44.8	49.1	62.0	-	-
400	480	104.0	109.0	114.0	154.0*	-	-
500	500	146.0	156.0	161.0	-	-	-
600	560	134.3	160.3	174.3	235.3	-	-
700	600	180.6	195.6	229.6	-	-	-
800	600	228.0	247.0	296.0	-	-	-
900	600	348.0	359.0	-	-	-	-
1000	600	503.0	538.0	-	-	-	-

[^6]
\square

DN	$\mathrm{L}_{\mathrm{u}}[\mathrm{mm}]$	z [mm]	Weight [kg]					
			PN 10	PN 16	PN 25	PN 40	PN 63	PN 100
BLS®								
80	130	90	10.2				12.3	-
100	130	90	12.2		12.7		16.3	20.7
125	135	95	15.5		17.0	17.0	26.8	-
150	135	95	19.9		22.1	22.1	31.5	33.4
200	140	100	28.7	28.9	29.6	34.6	49.0	56.4
250	145	105	40.6	39.7	44.3	51.9	67.5	86.4
300	150	110	52.3	52.1	56.1	69.9	84.9	120.0
400	160	120	90.0	89.0	102.0	127.5	-	-
500	170	130	125.0	140.5	151	162.0*	-	-
600	180	140	137.5	167.5	173.5	209.0*	-	-
700	190	150	202.0	248.0	278.0	-	-	-
800	200	160	269.5	270.0	316.0	-	-	-
900	210	170	347.0	370.0	427.0	-	-	-
1000	220	180	439.0	464.0	549.0	-	-	-

[^7]MMA fittings
Double socket tees with flanged branch to EN 545

DUKTUS

)工

DN	dn	L_{u} [mm]	$\mathrm{I}_{\mathrm{u}}[\mathrm{mm}]$	Weight [kg]			
				PN 10	PN 16	PN 25	PN 40
BLS ${ }^{\text {® }}$							
80	80	170	165	15.8			
100	80	170	175	20.5			
	100	190	180	21.9		-	
125	80	170	190	24.8			
	100	195	195	27.6		-	
	125	255	200	-		-	-
150	80	170	205	30.6			
	100	195	210	33.0		-	
	150	225	220	39.0		-	-
200	80	175	235	45.4			
	100	200	240	46.8		-	
	150	250	250	51.6		-	-
	200	315	260	-	57.0	-	-
250	80	180	265	56.0			
	100	200	270	57.5		-	
	150	260	280	63.5		-	-
	200	315	290	-	71.5	-	-
	250	375	300	-	-	-	-
300	80	180	295	76.6			
	100	205	300	81.2		-	
	150	260	310	80.0		-	-
	200	320	320	-	-	-	-
	300	435	340	110.0	-	-	-
400	150	270	370	148.0		152.0	152.0
	200	440	380	170.0	171.0	173.0	-
	300	440	400	191.0	192.0	197.0	-
	400	560	420	200.0	205.0	217.0	-
500	200	450	440	192.5	192.5	194.5	-
	300	450	460	205.0	205.0	211.0	-
	400	565	480	297.0	303.0	315.0	-
	500	680	500	338.0	362.0	363.0	372*

[^8]

DN	dn	L_{u} [mm]	I_{u} [mm]	Weight [kg]		
				PN 10	PN 16	PN 25
BLS ${ }^{\text {® }}$						
600	150	570	490	237.0		238.0
	200		500	254.0	254.0	247.0
	300		520	266.0	266.0	272.0
	400		540	279.0	284.0	296.0
	600	800	580	376.5	401.0	415.0
800	150	1045	580	657.0		645.0
	200		585	667.0	667.0	655.0
	400		615	695.0	682.0	693.0
	600		645	745.0	770.0	784.0
	800		675	791.0	809.0	855.0
900	100	475	630	540.0	592.0	598.0
	125		635	541.0	593.0	594.0
	150		640	543.0	594.0	600.0
	200		645	546.0	596.0	603.0
	250		655	550.0	599.0	608.0
	300		660	555.0	603.0	613.0
1000	100	480	690	672.0	738.0	745.0
	125		695	673.0	738.0	746.0
	150		700	675.0	739.0	747.0
	200		705	678.0	741.0	750.0
	250		715	682.0	741.0	750.0
	300		720	687.0	748.0	760.0

O fittings

Spigot end caps
to manufacturer's standard

E

DN	$\mathrm{t}[\mathrm{mm}]$	$\mathrm{D}[\mathrm{mm}]$	PFA [bar]	Weight [kg]
BLS® O fittings				
400	225	540	30	117
500	240	650	30	170

P plugs
 Socket plugs

to manufacturer's standard

F

DN	$L_{\text {U }}$ [mm]	L_{4} [mm]	d [mm]	PFA [bar]	Weight [kg]
BLS ${ }^{\text {® }}$ P plugs					
80	170	86	M 12	100	4.1
100	175	91	M 12		4.4
125	195	96	M 16		6.7
150	200	101	M 16		9.2
200	210	106	M 16		14.5
250	250	106	M 20		27.2
300	300	106	M 20		49.4

GL fittings (GDR fittings)

Plain ended pipe pieces

with two welded beads
to manufacturer's standard

Other lengths available on enquiry

[^9]
HAS fittings (A fittings)

House service connection fittings with outlet with 2" female thread
to manufacturer's standard
DUKTUS

1

BLS@ HAS fittings

80	305	215		
100	315	225		10.5
125	325	235		13.8
150	340	250	100	
200	355	265		23.8
250	370	275		
300	380	285		85

ENH fittings

90° duckfoot bends for hydrants with male threaded outlet

DUKTUS
to manufacturer's standard

DN	dn ["]	L_{1} [mm]	L_{2} [mm]	c [mm]	d_{1}	PFA [bar]	Weight [kg]
BLS® ENH fittings							
80	1.5	240	250	110	120	100	7.3
80	2.0	240	250	110	120	100	7.3

EN fittings

90° duckfoot bends
to manufacturer's standard

DN	Dimensions [mm]				Weight [kg]			
	L_{1}	L_{2}	c	d	PN 10	PN 16	PN 25	PN 40
BLS ${ }^{\text {® }}$ EN fittings								
80	165	145	110	180				
100	180	158	125	200				

All fittings produced by member companies of the "Fachgemeinschaft Gussrohrsysteme/ European Association for Ductile Iron Pipe Systems (FGR/EADIPS)" carry the "FGR" mark indicating that all the guidelines required for the award of the "FGR Quality Mark" have been complied with.
As well as this, all fittings are marked with their nominal sizes and bends are marked with their respective angles.
Flanged fittings have the pressure ratings PN 16, 25 or 40 cast or stamped onto them. No pressure rating appears on flanged fittings for PN 10 or on any socket fittings.
To identify their material as "ductile cast iron", fittings are marked with three raised dots arranged in a triangle (\bullet) on their outer surface.
In special cases, there may be further markings which are specified as needing to be applied.

2.3 Installation instructions

BLS ${ }^{\circledR}$ joints DN 80 to DN 500
DUKTUS

Applicability

These installation instructions apply to ductile iron pipes and fittings of DN 80 to DN 500 nominal sizes with restrained BLS ${ }^{\circledR}$ push-in joints.

For recommendations for transport, storage and installation, see p. 289 ff . For laying tools and other accessories, see Chapter 7.

For very high internal pressures and trenchless installation techniques (e.g. the press-pull, rocket plough or HDD techniques), an additional high pressure lock should be used in pipes of DN 80 to DN 250 nominal sizes (see the section entitled "High pressure lock" on p. 94).

The number of joints to be restrained should be decided on in accordance with DVGW Merkblatt GW 368 (see p. 301 ff).

For allowable tractive forces for trenchless installation techniques, see p. 108 or DVGW Arbeitsblätter GW 320-1, 321, 322-1, 322-2, 323 and 324.

Construction of the joint

Cleaning

Clean the surfaces of the seating for the gasket, the retaining groove and the retaining chamber which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples) from them. Use a scraper (e. g. a bent screwdriver) to clean the retaining groove.

Clean the spigot end. Remove any fouling and any excess paint (paint humps, bubbles or pimples).

Positions of the openings in the socket end-face when the pipe is in the pipeline trench

DN 80 to DN 250

DN 300 to DN 500

For inserting the locks or bolting on the clamping ring, it is advisable for the openings in the end-face of the socket to be positioned as shown.
For fittings, the position of the openings will depend on the particular installation situation. For WKG pipes with trace heating, care must be taken to see that the heating cable is positioned at the bottom of the pipe.

DUKTUS

Inserting the gasket

Lubricant should be used below TYTON ${ }^{\circledR}$ gaskets. For this purpose, carefully wipe a thin film of the lubricant supplied with the pipes by the manufacturer over the sealing surface identified
by the oblique lines.
Note: Do not put any lubricant in the retaining groove (the narrow groove)!
In hot, dry weather (summer) apply the lubricant immediately prior to installation, as it can dry out. In cold weather (winter), store the lubricant and seal warm until use, thus a much simpler assembly is given.

Clean the gasket and make a loop in it so that it is heart-shaped.

Fit the gasket into the socket so that the hard-rubber claw on the outside engages in the retaining groove in the socket.
Then press the loop flat.

If you have any difficulty in pressing the loop flat, pull out a second loop on the opposite side. These two small loops can then be pressed flat without any difficulty.

The inner edge of the hard-rubber claw of the gasket must not project below the locating collar.

Right

Wrong

Apply a thin layer of lubricant to the gasket.

Spigot end with welded bead

Apply a thin layer of lubricant to the cleaned spigot end - and particularly to the bevel - and then pull or push the spigot end into the socket until it is in abutment with the end-wall of the socket. Pipes must not be in a deflected angular position when they are being pushed in or the locks are being inserted.

Do not remove whatever is being used to lift the pipe until the joint has been fully assembled

DUKTUS

1) Insert the "right" lock in the opening in the socket and slide it to the right as far as possible.
2) Insert the "left" lock in the opening in the socket and slide it to the left as far as possible.
3) Press the catch into the opening in the socket.

On pipes of DN 300 size and above, steps 1 to 3 have to be carried out twice because 2×2 locks and 2 catches are used in this case.

Spigot end without a welded bead

First insert the two halves of the clamping ring into the retaining chamber separately and then connect them together loosely with the two bolts.

Mark the depth of insertion (the depth of the socket) on the spigot end.
Apply lubricant to the cleaned spigot end - and particularly to the bevel - and then pull or push it in until it is fully home in the socket. Pipes must not be at an angular deflection when they are being pulled in. After the pulling-in, the mark previously made on the spigot end should be almost in line with the end-face of the socket.
Pull the clamping ring towards the end-face of the socket as far as possible and then tighten the bolts with a torque wrench. Attention - model change! 60 Nm only applies for new zinc coated (colour = silver) clamping rings.

Tightening torque 60 Nm (M12, AF 19 mm)

DUKTUS

Notes on clamping ring joints

Care should be taken to see that clamping ring joints are not used in above-ground pipelines or pipelines subject to pulsations or for trenchless installation techniques. For single socket bends, double socket bends, 90° flange socket duckfoot bends and 90° duckfoot bends with side outlets, the PFA is a maximum of 16 bars. Please enquire for PFA's of more than 16 bars.
For connections at bends where the operating pressure is > 16 bars, an adaptor, a piece of cut pipe with two spigot ends, is turned through 180° so that the end carrying the welded bead mates with the socket of the bend.

Before the remaining, socketed, piece of the cut pipe is installed, an uncut pipe is laid. The spigot end of the piece of cut pipe, which does not carry a welded bend, is then inserted in the socket of the uncut pipe.
Our Applications Engineering Division should be consulted before clamping rings are used in culvert or bridge pipelines and before joints using them are laid on steep slopes, in casing tubes or pipes, in utility tunnels or in above-ground pipelines or pipelines subject to pulsations. Clamping rings should not be used in these cases or in trenchless installation techniques. The pieces of adapter pipe required should be provided with welded beads.

Direction of laying

Lock joints (with welded beads)

Locking

Pull or push the pipe out of the socket, e. g. with a laying tool, until the locks or the clamping ring are firmly in abutment in the retaining chamber.
The joint is now restrained.

Angular deflection

Once the joint has been fully assembled, pipes and fittings can be deflected angularly as follows:

| DN | 80 | to | DN $150-\max$ of 5° |
| :--- | ---: | :--- | :--- | :--- |
| DN 200 | to | DN $300-\max$ of 4° | |
| DN 400 | and | DN $500-\max$ of 3° | |

For a pipe length of $6 \mathrm{~m}, 1^{\circ}$ of angular deflection causes the axis of the pipe to lie approx. 10 cm off the axis of the pipe or fitting installed previously, i.e. $3^{\circ}=30 \mathrm{~cm}$.

DUKTUS

Note on installation

Make sure that, as a function of the internal pressure and the tolerances on joints, it is possible for extensions of up to about 8 mm to occur.
To allow for the travel of the pipeline when it extends when pressure is applied, joints at bends should be set to the maximum allowable angular deflection in the negative direction.

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 364). If pipes have to be cut on site, the welded bead required for the BLS ${ }^{\oplus}$ push-in joint has to be applied using an electrode as specified by the pipe manufacturer. The welding work should be done in accordance with Merkblatt DVS 1502 or the technical recommendations for welding given from p . 367 on.

The distance between the end of the spigot end and the welded bead and the size of the welded bead must be as shown in the table below.
Electrode type, e. g. Castolin 7330-EC, UTP FN 86, ESAB OK 92.58, Gricast 31 or 32. The electrode diameter should be 3.2 mm below DN 400 and 4.0 mm at DN 400 and above.
For electrode consumption see p. 102

DN	80	100	125	150	200	250	300	400	500
L	86 ± 4	91 ± 4	96 ± 4	101 ± 4	106 ± 4	106 ± 4	106 ± 4	115 ± 5	120 ± 5
a	8 ± 2	8 ± 2	8 ± 2	8 ± 2	9 ± 2	9 ± 2	9 ± 2	10 ± 2	10 ± 2
b	$5^{+0.5}$	$5^{+0.5}$	$5_{-1}^{+0.5}$	$5^{+0.5}$	$5,5^{+0.5}$	$5.5^{+0.5}$	$5,5_{-1}^{+0.5}$	$6^{+0.5}$	$6^{ \pm 0.5}$

To ensure that there is a good welded bead at a uniform distance from the end, a copper welding guide must be fastened to the spigot end at the specified distance from the end (see Table) as a guide for application. The area to be welded must be bright metal. Any fouling or zinc coating must be removed by filing or grinding.
When the welding guide is removed, the cut edge of the spigot end should be matched to the form of an original spigot end and the area of the welded bead should be cleaned. Finally, the appropriate protective coating should be applied to both these areas.

Disassembly

Push the pipe as far as possible into the socket along its axis. Remove the catch through the opening in the socket end-face. Slide the locks round and remove them through the opening. If a high-pressure lock is fitted, slide it round from the bottom of the pipe to the opening with a flat object (e. g. a screwdriver) and remove it.

DUKTUS

Disassembly of clamping ring joints

Push the pipe into the socket along its axis until it is in abutment.
Remove the clamping bolts and then loosen the halves of the clamping ring by hitting them with a hammer. Ensure that the halves of the clamping ring remain loose during disassembly (if necessary by again hitting them with a hammer as the spigot end is pulled out). They can also be stopped from jamming on the spigot end during disassembly by inserting a square steel bar between the lugs at the ends of the halves. Do not under any circumstances hit the socket or the barrel of the pipe with the hammer!

High-pressure lock

An additional high-pressure lock should be used whenever very high internal pressures are expected (e.g. in the case of turbine pipelines) and whenever trenchless installation techniques are used (e.g. the press-pull, rocket plough or horizontal directional drilling techniques).
Before the left and right locks are inserted, the high-pressure lock is inserted in the retaining chamber through the opening in the end-face of the socket and is positioned at the bottom of the pipe. The locks can then be inserted and the high-pressure lock is thus situated between their flat ends. The locks are then fixed in place in the usual way with the catch.
The illustration below shows a fully assembled BLS ${ }^{\circledR}$ socket with a high-pressure lock. The high-pressure lock can be used for pipes of nominal sizes from DN 80 to DN 250.

2.4 Installation instructions

BLS ${ }^{\circledR}$ joints DN 600 - DN 1000

Applicability

These installation instructions apply to DN 600 - DN 1000 ductile iron pipes and fittings with restrained BLS ${ }^{\circledR}$ push-in joints.

For recommendations for transport, storage and installation, see p. 289 ff .
For laying tools and other accessories, see Chapter 7.
The number of joints which have to be restrained should be decided on in accordance with DVGW Arbeitsblatt GW 368 (see p. 301 ff).

For allowable tractive forces for trenchless installation techniques see DVGW Arbeitsblätter GW 320-1, 321, 322-1, 322-2, 323 and 324.

Construction of the joint

Number n of locking segments per joint

DN	600	700	800	900	1000
n	9	10	10	13	14

Cleaning

Clean the surfaces of the seating for the gasket, the retaining groove and the retaining chamber which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples).

Use a scraper (e. g. a bent screwdriver) to clean the retaining groove.
Clean the spigot end. Remove any fouling and any excess paint (paint humps, bubbles or pimples).

Positions of the openings in the socket end-face

The opening in the end-face of the socket should always be situated at the top of the pipe.

Opening in end-face of socket

View on X

DUKTUS

Inserting the gasket

Lubricant should be used below TYTON ${ }^{\circledR}$ gaskets.
For this purpose, carefully wipe a thin film of the lubricant supplied with the pipes by the manufacturer over the sealing surface identified by the oblique lines.

Note: Do not put any lubricant in the retaining groove (the narrow groove)!

In hot, dry weather (summer) apply the lubricant immediately prior to installation, as it can dry out. In cold weather (winter), store the lubricant and seal warm until use, thus a much simpler assembly is given.

Clean the TYTON ${ }^{\circledR}$ gasket and make a loop in it so that it is heart-shaped.

Fit the TYTON ${ }^{\circledR}$ gasket into the socket so that the hard-rubber claw on the outside engages in the retaining groove in the socket.

DUKTUS

Then press the loop flat.
If you have any difficulty in pressing the loop flat, pull out a second loop on the opposite side. These two small loops can then be pressed flat without any difficulty.
The inner edge of the hard-rubber claw of the
 TYTON ${ }^{\circledR}$ gasket must not project below the locating collar.

Right

Apply a thin layer of lubricant to the TYTON ${ }^{\circledR}$ gasket. In hot, dry weather (summer) apply the lubricant immediately prior to installation, as it can dry out. In cold weather (winter), store the lubricant and seal warm until use, thus a much simpler assembly is given.

DUKTUS

Assembling the joint

Apply a thin film of lubricant to the cleaned spigot end - and particularly to the bevel and then pull or push it in until it is fully home in the socket. The pipes must not be at an angular deflection when being pulled in or when the lock segments are being fitted.

First insert the locking segments through the opening in the end-face of the socket and distribute them around the circumference of the pipe, working alternately left and right.

Then move all the segments round in one direction until the last segment can be inserted through the openings in the end-face of the socket and can be moved to a position where it provides secure locking.

Only a small part of the humps on the last locking segment should be visible through the opening in the end-face of the socket. Should segments jam, they should be moved to their intended position by gentle taps with a hammer by moving the pipe as it hangs from the sling.

Do not under any circumstances hit the socket or the barrel of the pipe with the hammer!

Locking

Pull back all the locking segments in the outward direction until they are in abutment against the slope of the retaining chamber. Then fit the clamping strap around the outside of the segments as shown in the illustration. Tighten the clamping strap only sufficiently far enough to still allow the locking segments to be moved. Now line up the locking segments. They should be resting against the barrel of the pipe over their full area and should not be overlapping. Then tighten the clamping strap until the locking segments are bearing firmly against the pipe around the whole of its circumference.
It should now no longer be possible to move the locking segments. By pulling on it axially (e. g. by means of a locking clamp), pull the pipe out of the joint until the welded bead comes to rest against the segments. When the pipe is in an undeflected state, the locking segments should all be approximately the same longitudinal distance away from the end-face of the socket.

Note: A metal clip rather than the clamping strap should be used in all trenchless techniques.

Angular deflection

Once the joint has been fully assembled, pipes and fittings can be deflected angularly as follows:

```
DN 600 - max. of 2.0
DN 700 - max. of 1.5
DN 800 - max. of 1.5
DN 900 - max. of 1.5
DN 1000 - max. of 1.5 
```

For a pipe length of $6 \mathrm{~m}, 1^{\circ}$ of angular deflection causes the axis of the pipe to lie approx. 10 cm off the axis of the pipe installed previously, i.e. $3^{\circ}=30 \mathrm{~cm}$.

Note on installation

Please remember that, as a function of the internal pressure, it is possible for extensions of up to about 8 mm per joint to occur as a result of the locking segments adjusting.

To allow for the travel of the pipeline when it extends when pressure is applied, joints at bends should be set to the maximum allowable angular deflection in the negative direction.

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 364).
If pipes have to be cut on site, the welded bead required for the BLS ${ }^{\circledR}$ push-in joint has to be applied using an electrode as specified by the pipe manufacturer.
The welding work should be done in accordance with Merkblatt DVS 1502 or the technical recommendations for welding given from p. 367 on.

The distance between the end of the spigot end and the welded bead and the size of the welded bead must be as shown in the table below.

Electrode type, e. g. Castolin 7330-EC, UTP FN 86, ESAB OK 92.58, Gricast 31 or 32.

DN	600	700	800	900	1000
L	116	134	143	149	159
a	9 ± 1				
b	6	6	6	6	6

To ensure that there is a good welded bead at a uniform distance from the end, a copper welding guide must be fastened to the spigot end at the specified distance from the end (see table) as a guide for application.

The area to be welded must be bright metal. Any fouling or zinc coating must be removed by filing or grinding.

DUKTUS

When the welding guide is removed, the cut edge of the spigot end should be matched to the form of an original spigot end and it and the area of the welded bead should be cleaned. Finally, the appropriate protective coating should be applied to both these areas.

Disassembly

Push the pipe into the socket along its axis until it is in abutment and remove the locking segments through the opening in the socket end-face.

Special pipelines

Our Applications Engineering Division should be consulted if for example joints of this kind are to be used in casing tubes or pipes, on bridges, for the horizontal direction drilling technique or in culvert pipelines.
Pipelines on steep slopes should be installed from the top down, meaning that after each individual pipe has been extended the locking will be maintained by gravity. If this procedure cannot be followed, suitable steps must be taken to prevent the locking from being cancelled out by gravity.

Combining fittings belonging to other systems with BLS ${ }^{\circledR}$ joints

Our Applications Engineering Division should be consulted if pipe ends of the present type are to be combined with fitting sockets belonging to other systems.

Electrode consumption

DN nominal size	Electrode consumption per bead $\varnothing 3.2 \mathrm{~mm}$ [unit]	Electrode consumption per bead $\varnothing 4.0 \mathrm{~mm}$ [unit]	Time required per welded bead [min]
80	5		15
100	6		18
125	8		24
150	9	-	27
200	12		36
250	15		43
300	17		50
400	8 +	11	57
500	$11+$	14	75
600	13 +	+ 16	87
700	16 +	+ 19	105
800	18 +	+ 22	120
900	$21+$	+ 25	138
1000	$23+$	+ 27	150

The welded bead should normally be applied in two passes, the root pass normally being welded with a $\varnothing 4.0 \mathrm{~mm}$ electrode on pipes of DN 400 size and above.

The electrode consumptions and times required given in the table are only a guide.

DUKTUS

3 FIELDS OF USE OF THE POSITIVE LOCKING SYSTEM

DUKTUS

There are almost no limits to the versatility with which pipes and fittings with BLS ${ }^{\circledR}$ joints can be used. The quick and easy assembly and the very high allowable operating pressures and tractive forces for which they can be relied on make them suitable for virtually any conceivable application in the laying of pressure pipelines (for water or sewage).

Some typical fields of use are:

- trenchless installation techniques
- snow-making systems
- turbine pipelines
- fire-fighting and fire-extinguishing pipelines
(FM Approval and German Federal Railways approval)
- bridge pipelines/above-ground pipelines
- temporary pipelines (for temporary water supplies)
- floating-in
- crossings below waterways/culvert pipelines
- laying on steep slopes
- use in regions at risk of earthquakes or settlement
- urban water supply/replacement of concrete thrust blocks

Brief explanations of the above fields of use are given in the present Chapter. Further details can be found in our information leaflets on particular fields or can be requested directly from us. We will be happy to arrange a meeting for consultation.

106

3.1 Trenchless installation techniques

DUKTUS

There is a long tradition to the use of ductile iron pipes in trenchless installation techniques. The triumphal progress of these techniques began in the early 1980's and ductile iron pipes have been used for them ever since that time. The range of possible trenchless techniques for laying new pipes and replacing old ones covers the following:

- pipe relining (pulled) under DVGW Arbeitsblatt GW 320-1
- pipe relining (pushed) under DVGW Arbeitsblatt GW 320-1
- horizontal directional drilling (HDD) technique under DVGW Arbeitsblatt GW 321
- press-pull technique under DVGW Arbeisblatt 322-1
- auxiliary tube technique under DVGW Arbeitsblatt 322-2
- burst lining under DVGW Arbeitsblatt GW 323
- ploughing and milling techniques under DVGW Arbeitsblatt GW 324

With a few exceptions, the above techniques all call for the use of the positive locking BLS ${ }^{\circledR}$ joint, a cement mortar coating (ZMU) and sheet-metal cones to protect the sockets.

The advantages of ductile iron pipes for trenchless installation techniques can be listed as follows:

- very short assembly times (between 5 min and 20 min)
- this makes pipe-by-pipe assembly possible even in horizontal directional drilling
- the use of pipe-by-pipe assembly makes small, short pits possible
- the joint is able to carry loads immediately after assembly
- very high and reliable tractive forces compared with other materials
- the high tractive forces give ductile iron pipes an extra measure of safety
- tractive forces are not dependent on temperature or the duration of the pulling-in
- assembly is possible in (almost) all weathers
- the cement mortar coating provides protection against mechanical and chemical attack
- the high diametral and longitudinal stiffness ensure that life is not restricted even when the conditions of support are poor
- stones and fragments of old pipes are not a problem

DN	$\begin{aligned} & \text { PFA } \\ & {\left[\text { bar }{ }^{11}\right.} \end{aligned}$	Allowable tractive force $\mathrm{F}_{\text {al! }}[\mathrm{kN}]$		Max. angular deflect-ion at sockets ${ }^{3)}\left[{ }^{\circ}\right]$	Min. radius of curves [m]	Number of fitters	Assembly time without joint protection [min]	Assembly time when using a protective sleeve [min]	Assembly time when using a shrink-on sleeve [min]
		$\begin{gathered} \hline \text { DV } \\ \text { GW } \\ \text { 2) } \end{gathered}$	Duktus						
80*	110	70	115	5	69	1	5	6	15
100*	100	100	150	5	69	1	5	6	15
125*	100	140	225	5	69	1	5	6	15
150*	75	165	240	5	69	1	5	6	15
200	63	230	350	4	86	1	6	7	17
250	44	308	375	4	86	1	7	8	19
300	40	380	380	4	86	2	8	9	21
400	30	558	650	3	115	2	10	12	25
500	30	860	860	3	115	2	12	14	28
600	32	1,200	1,525	2	172	2	15	18	30
700	25	1,400	1,650	1.5	230	2	16	-	31
800	16	-	1,460	1.5	230	2	17	-	32
900	16	-	1,845	1.5	230	2	18	-	33
1000	10	-	1,560	1.5	230	2	20	-	35

1) Basis for calculation was wall-thickness class K9. Higher pressures and tractive forces are possible in some cases and should be agreed with the pipe manufacturer. 2) When the route is straight (max. of 0.5° deflection per joint), the tractive forces can be raised by 50 kN . High-pressure lock is required on DN 80 to DN 250 pipes. 3) At nominal dimension; * Wall-thickness classes K10

Precise descriptions of the individual techniques and of how the special properties of ductile iron pipes cater for them together with details of reference projects can be found in our manual entitled "trenchless installation techniques using ductile iron pipes".

DUKTUS

The most important factor in the economics of regions dependent on winter sports is the certainty of snow. So, for winter sports resorts to be attractive and for that vital factor to be guaranteed, there are two essential requirements: the use of snow-making systems and hence an assurance that there will be snow on the ski runs for the skiers to swoop down.
For a snow-making system to operate satisfactorily, the main requirement is a reliable water supply system able to meet all the demands that are made on it in high mountainous terrain and by very high pressures of up to 100 bars.
The ruggedness of the material and the flexible socket system, together with the speed and ease of assembly and laying, have made Duktus the market leader all over the world in pipes and fittings for snow-making systems.

The advantages for you:

- maximum safety and reliability at operating pressures up to 100 bars
- fast and uncomplicated laying; no welding required
- a sophisticated product range covering pipes, fittings and the BLS ${ }^{\circledR}$ joint all from one supplier; sizes from DN 80 to DN 500
- deflectable to a max. of 5°, which saves on time and fittings
- working life of >50 years
- good assortment of pipes and fittings held in stock so short delivery times are possible
- consultancy at the planning stage and training courses for layers given by experts
- technically and economically, the most efficient pipe system on the market
- laying rates of up to 400 m a day are possible
- we are specialists in the production of ductile iron pipes and have had decades of experience
- product quality monitored to EN standards; member of various quality assurance associations; ISO 9001 certified
- our list of reference projects speaks for itself.

DUKTUS

Our ductile iron pipes for snow-making systems are available to the following specifications:

- laying length of 6 m
- nominal sizes of DN 80 to DN 500
- internal protection: cement mortar lining
- external protection: zinc coating ($200 \mathrm{~g} / \mathrm{m}^{2}$) plus finishing layer
- alternative coatings are possible, e. g. cement mortar (ZMU) or Zinc Plus

Operating pressures for BLS ${ }^{\circledR}$ jointed snow-making systems

DN	PFA [bar]	Angular deflection [${ }^{\circ}$]	
80	100	5°	2 locks + HP lock + catch
100	100	5°	2 locks + HP lock + catch
125	100	5°	2 locks + HP lock + catch
150	100	5°	2 locks + HP lock + catch
200	100	4°	2 locks + HP lock + catch
250	100	4°	2 locks + HP lock + catch
300	85	4°	4 locks + 2 catches
400	30	3°	4 locks + 2 catches
500	30	3°	4 locks + 2 catches

Higher pressures available on enquiry!
The operating pressures shown also apply to the fittings. These are given an internal and external epoxy coating to EN 14901.
Further details of the products for snow-making systems can be found in our leaflet entitled "Snow-making systems".

Durtes

DUKTUS

Turbine pipelines are laid predominantly in terrain which can be classed as extreme. Conditions of this kind and the high operating pressures demand equipment with a performance to suit - ductile iron pipes. The joints between the pressure pipes also need to be easy and quick to make and safe, secure and totally leaktight when made.
These demands can be met by the BLS ${ }^{\circledR}$ joint, which has proved its worth a million times over. It means that all the work can be done quick and safely - only a narrow trench to dig out, joints are deflectable, pipes can be laid even in bad weather and the ground can soon be recultivated. The outstanding strength properties of our ductile cast iron pipes and the restraint they provide against tractive and thrust forces ensure that the pipelines to hydroelectric power stations will enjoy trouble-free operation for generations. Electricity from the power of water means clean energy!

The advantages for you:

- maximum safety and reliability for operating pressures up to 100 bars
- fast and uncomplicated laying; no welding required
- a sophisticated product range covering pipes, fittings and the BLS® joint all from one supplier; sizes from DN 80 to DN 1000
- joints deflectable to a max. of 5°, which saves on time and fittings
- long working life
- maximum corrosion protection from high-performance coating systems
- low-abrasion cement mortar lining
- good assortment of pipes and fittings held in stock so delivery times are short
- consultancy at the planning stage and training courses for layers given by experts
- technically and economically, the most efficient pipe system on the market
- laying rates of up to 400 m a day are possible
- we are specialists in the production of ductile iron pipes and have had decades of experience
- product quality monitored to EN standards; member of various quality assurance associations and ISO 9001 certified
- our list of reference projects speaks for itself.

Our ductile iron pipes for turbine pipelines are available to the following specifications:

- laying length of 6 m
- nominal sizes of DN 80 to DN 1000
- internal protection: cement mortar lining
- external protection: zinc coating ($200 \mathrm{~g} / \mathrm{m}^{2}$) plus finishing layer
- alternative coatings are possible, e. g. cement mortar (ZMU) or Zinc Plus

System pressures (pressure pipes and fittings) up to DN 1000 with BLS® restrained socket joints.

DN	PFA [bar	Max. angular deflection $\left[{ }^{\circ}\right.$	Locks
80	100	5	2 locks + HP lock + catch
100	100	5	2 locks + HP lock + catch
125	100	5	2 locks + HP lock + catch
150	100	5	2 locks + HP lock + catch
200	100	4	2 locks + HP lock + catch
250	100	4	2 locks + HP lock + catch
300	85	4	4 locks +2 catches
400	30	3	4 locks +2 catches
500	30	3	4 locks +2 catches
600	40	2	9 segments
700	25	1.5	10 segments
800	25	1.5	10 segments
900	25	1.5	13 segments
1000	25	1.5	14 segments

Higher pressures available on enquiry!
The operating pressures shown also apply to the fittings. These are given an internal and external epoxy coating to EN 14901.

Further details of the products can be found in our leaflet entitled "Ductile iron pipe systems for turbine pipelines".

3.4 Fire fighting and fire extinguishing pipelines

DUKTUS

Nothing is more important than safety - in tunnels, in structures enclosing roads and railways and in industrial plants the outbreak of a fire is something which is particularly feared and catastrophic incidents in the past have shown how immensely important efficient protective systems are.
A basic requirement for combating a fire successfully is pipelines for fire fighting and fire extinguishing water which will operate properly in an emergency and which are themselves able to withstand the effects of the fire.
Like airbags in a car, fire fighting and fire extinguishing pipelines give an assurance of safety but will hopefully never have to demonstrate their reliability in an emergency. How reassuring it then is to know that only the best of equipment has been used for them. Ductile iron pipes from Duktus provide this reassurance. There are a whole range of significant factors that allow them to do this:

- allowable operating pressures of up to 100 bars
- safety factor of 3 for the pipe wall
- safety factor of 1.5 for the joint systems
- material of the pipes is heat resistant and non-combustible
- fire-resistant for 60 minutes at $900^{\circ} \mathrm{C}$
- able to withstand high mechanical stresses
- restrained joints able to accept angular deflections
- experience gained from more than $400,000 \mathrm{~m}$ of fire fighting and fire extinguishing pipelines already laid
- a product of tested quality (ISO 9001, MPA NRW (North-Rhine Westphalia Materials Testing Institute), FM approved, DB (Federal German Railways) approved, MA 39 (Research Centre, Laboratory and Certification Services of the City of Vienna))
- consultancy services at the planning stage, and training in laying given by experts

As well as this, ductile iron pipes also have an extremely long technical working life, and have many possible uses and many ways in which they can be adapted, e. g. by means of different variant coatings.

DUKTUS

Basic documents for planning

In Germany, fire fighting pipelines and sprinkler systems are generally designed to meet technical rule VdS CEA 4001 (VdS Schadenverhütung GmbH, CEA - Comité Européen des Assurances).
The principal parts of EN 12845 are in conformity with VdS CEA 4001. In Austria, design is to TRVB S 127. However, the American standards of the NFPA (National Fire Protection Association) - and also, in a modified or developed form, the FM (Factory Mutual) standards - are becoming increasingly popular with international clients and are now generally accepted by German approving authorities as well.
In certain cases, there may also be company-specific, supplementary or independent sets of rules which are crucial. An example of this is the guideline issued by the German Federal Railway Authority dealing with "Anforderungen des Brand- und Katastrophenschutzes an den Bau und Betrieb von Eisenbahntunneln" [Requirements for protection against fire and disasters to be met in the construction and operation of railway tunnels].

Certificates/Approvals

Ductile iron pipes from Duktus are a first choice when the right pipe material is being laid down for fire fighting or fire extinguishing pipelines regardless of whether these are wet pipelines (permanently charged with water) or dry pipelines (only charged with water when required). There is no better proof of this than the more than 400,000 metres of pipes which have already been installed.
The logical consequence is that ductile iron pipes to EN 545 are listed in all the relevant standards, rules and requirements and are approved for use in fire fighting and fire extinguishing pipelines. In VdS CEA 4001, chapter 15.1.1, ductile iron pipes are listed in first place among the only pipeline materials which can be used. There is of course FM approval for underground pipes and fittings of nominal sizes from DN 80 to DN 500 with BLS® ${ }^{\circledR}$ push-in joints. The relevant details can be found in the Table below. Deutsche Bahn AG, the federal German railway company, shows ductile iron pipes with BLS ${ }^{\circledR}$ push-in joints as suitable pipe equipment for fire fighting and fire extinguishing pipelines for use in its tunnels in its technical notice "TM 2010-024 I.NVT 4 (K)". This applies both to pipelines laid in the floors of tunnel and to suspended pipelines.

DUKTUS

Our ductile iron pipes for fire fighting and fire extinguishing pipelines are available to the following specifications:

- laying length of 6 m
- nominal sizes of DN 80 to DN 1000
- internal protection: cement mortar lining
- external protection: zinc coating ($200 \mathrm{~g} / \mathrm{m}^{2}$) plus finishing layer
- alternative coatings are possible, e. g. cement mortar (ZMU), WKG or Zinc Plus

Allowable operating pressures of the BLS ${ }^{\oplus}$ push-in joint

DN	d_{1} $[\mathrm{~mm}]$	D $[\mathrm{mm}]^{1)}$	t $[\mathrm{mm}]$	PFA $[\text { bar }]^{2)}$	FM $[$ bar]	Max. allow- able angular deflection [${ }^{\circ}$]	Number of locking seg- ments
$80^{4)}$	98	156	127	$100 / 110^{3)}$	16	5	$2 / 3^{3)}$
$100^{4)}$	118	182	135	$75 / 100^{3)}$	16	5	$2 / 3^{3)}$
$125^{4)}$	144	206	143	$63 / 100^{3)}$	16	5	$2 / 3^{3)}$
$150^{4)}$	170	239	150	$63 / 75^{3)}$	16	5	$2 / 3^{3)}$
200	222	293	160	$42 / 63^{3)}$	16	4	$2 / 3^{3)}$
250	274	357	165	$40 / 44^{3)}$	16	4	$2 / 3^{3)}$
300	326	410	170	40	16	4	4
400	429	521	190	30	16	3	4
500	532	636	200	30	16	3	4
600	635	732	175	32	-	2	9
700	738	849	197	25	-	1.5	10
800	842	960	209	$16 / 25^{4)}$	-	1.5	10
900	945	1,073	221	$16 / 25^{4)}$	-	1.5	13
1000	1,048	1,188	233	$10 / 25^{4)}$	-	1.5	14

1) Guideline value, 2) Operating pressure (PFA): allowable operating pressure in bars

- basis for calculation was wall thickness class K9, 3) with high-pressure lock, 4) wallthickness class K10

The operating pressures shown also apply to the fittings. These are given an internal and external epoxy coating to EN 14901.

Further details of the products can be found in our leaflet entitled "Ductile iron pipe systems for fire protection systems".

3.5 Bridge pipelines and above-ground pipelines

DUKTUS

Whether they are suspended from bridges or laid on supports, there are three main problems affecting pressure pipelines laid above ground:

1. the risk of freezing in winter
2. the heating up of the pipes and hence of the medium in summer
3. thrust blocks are difficult to construct

Heat-compensating ductile iron (= WKG; the German is wärmekompensierende Guss) pipes and fittings with BLS ${ }^{\circledR}$ joints provide a practicable solution to these three problems.

The advantages of this system are obvious:

- the joint is quick and easy to assemble
- no thrust blocks required
- insulation for pipes and double socket bends is applied in the factory
- trace heating is possible
- very low coefficient of thermal expansion
- any variations in length can generally be compensated for by sockets and fittings
- one support per pipe is usually adequate

Further details of thermally insulated ductile iron pipe systems can be found in Chapter 6 or in the leaflet entitled "Gussrohrsysteme für Frostgefährdete Leitungen".

Duktus

3.6 Temporary pipelines (for replacement water supplies)

As described in Chapter 3.5, ductile iron pipelines with BLS ${ }^{\circledR}$ joints can be laid above ground. Pipelines laid in this way do not always require thermal insulation. This is for example the case when the pipe diameter is large and the rate of flow high, when the medium carried stands still for only short periods, when there is no risk of freezing or when the medium is not sensitive to fluctuations in temperature.

The advantages of ductile iron pipe systems for temporary pipelines are as follows:

- safety from vandals (ductile iron pipes will resist almost any attack)
- the joint is easy and quick to assemble
- high laying rates
- disassembly with no damage or destruction
- the pipes and fittings can be re-used
- no thrust blocks required
- high operating pressures are possible

Our ductile iron pipes for temporary pipelines are available to the following specifications:

- laying length of 6 m
- nominal sizes of DN 80 to DN 1000
- internal protection: cement mortar lining
- external protection: zinc coating ($200 \mathrm{~g} / \mathrm{m}^{2}$) plus finishing layer
- alternative coatings are possible, e. g. cement mortar (ZMU), WKG or Zinc Plus

Further information on the technique concerned and of how the special properties of ductile iron pipes cater for it together with details of reference projects can be found in our manual entitled "Trenchless installation techniques using ductile iron pipes".

3.7 Floating-in

The floating-in of ductile iron pipes is probably the most unusual of the "trenchless" techniques available.
At sizes of DN 250 and above, the buoyancy of a sealed ductile iron pipe is so great that it is able to float without the need for any other bodies to provide buoyancy. This means that basically there are two possible ways of getting a pipe string out onto the water and, in the end, down below the water. At sizes up to and including DN 200 and depending on the wall thickness, additional floats may be required, while at sizes of DN 250 and above the pipe string can be installed as a self-supporting floating unit.
Due to unpredictable loads from the waves, the sinking process, the nature of the sea or river bed and subsequent movements of the sea or river bed, etc., it is generally only pipes with the positive locking BLS® joint which should be used for floating-in. This is turn means that the pipeline should be pulled in so that the joints remain extended and thus securely locked. The preferred external coating for floating-in and for the subsequent laying in generally muddy sea or river beds is the cement mortar coating.

Our ductile iron pipes for floating-in are available to the following specifications:

- laying length of 6 m
- nominal sizes of DN 80 to DN 1000
- internal protection: cement mortar lining
- external protection: cement mortar coating (Duktus ZMU)
- alternative coatings are possible, e.g. zinc coating $\left(200 \mathrm{~g} / \mathrm{m}^{2}\right)$ plus finishing layer, or Zinc Plus

Further information on this technique and of how the special properties of ductile iron pipes cater for it together with details of reference projects can be found in our manual entitled "Trenchless installation techniques using ductile iron pipes".

3.8 Crossings below waterways/ culvert pipelines

Culvert pipelines are used to make crossings below waterways or below structures. The pre-assembly of the pipe string can be carried out in the dry - the positive locking BLS® joint makes it possible for the subsequent pulling-in to be carried out.

Culvert pipelines are often lifted in by cranes, pulled into prepared channels by winches or installed trenchlessly by the horizontal direction drilling technique.

All these techniques make severe demands on the material of the pipes, on the joint mechanism and on the external protection which the pipes have. Consequently, what are used for them are generally only ductile iron pipes with positive locking joints and a cement mortar coating.

A detailed description on the subject of crossings below waterways and culvert pipelines together with details of reference projects can be found in our manual entitled "Trenchless installation techniques using ductile iron pipes".

When a pipeline is being laid on a steep slope (gradient > 20% to 30%), there are a number of factors that make it advisable for the positive locking BLS® system to be used. In the first place there are sometimes tremendous forces that come into play, due to

- the weight of the pipes. The resultant force acting down the slope causes the pipe string to exert a pull at the top end of the steeply sloping pipeline. At this point there is usually a bend (a double socket bend) and a not inconsiderable tractive force may thus be generated at its socket
- the pressure in the pipeline. This causes additional forces to act both on the bend at the top and on that at the bottom
- slip of the material filling the trench. If the material filling the trench begins to slip, this exerts a pull on the pipeline due to the skin friction between the soil and the surface of the pipes. This too transmits additional forces to the socket joints of the bend at the top.

In the second place, a steep slope usually constitutes inaccessible terrain and in terrain of this kind a pipe joint ought to be able to be assembled as quickly and as easily as possible. All the above factors make it advisable for the BLS ${ }^{\circledR}$ system to be used.
This system combines very high tractive forces and operating pressures with very simple and hence very quick assembly. What is more, if our cement mortar coating (Duktus ZMU) is added, any replacement of soil on the steep slope can be dispensed with, thus reducing the risk of slippage of the material filling the trench.

DUKTUS

All over the world there are many settled areas which are situated in regions where the ground moves periodically, which may be the result of earthquakes or may be the result of mining subsidence in regions affected by mining. There are often large towns in these regions whose infrastructure is put at serious risk and there have been no lack of attempts to apply special methods of construction in order to minimise the damage in the event of earthquakes or mining subsidence.
Under EN 508, the designer is under an obligation to decide on the right pipe material for installation work which is planned. The designers and operators of water pipeline networks cannot always estimate all the imponderables which affect the loads on pipelines and their joints. This is particularly true when installation takes place under the following conditions:

- regions affected by mining subsidence
- unstable soils
- regions at risk of earthquakes
- slopes.

The allowable operating pressures and angular deflections of ductile iron pipes with restrained socket joints are laid down in the technical documentation such as in manufacturer's catalogues, FGR/EADIPS publications, e. g. FGR/EADIPS standard 66, DVGW (German Technical and Scientific Association for Gas and Water) codes, e. g. DVGW Arbeitsblatt GW 368, and so on. The figures laid down include a large safety factor but there are no quantitative details of the extreme loads which can be carried for brief periods, e.g. when acted on by an earthquake, without the pressure-tightness function being lost.
In a series of tests tailored specifically to the conditions existing during movements of the ground, it has been determined what actual safety factors ductile iron pipes can be expected to show under catastrophic conditions. For this purpose, leak tests were carried out on DN 200 pipes for water pipelines by applying to their joints angular deflections which went far beyond that laid down in the product standard EN 545. The aim was to find out up to what angular deflection the system would remain serviceable and leaktight under extreme circumstances. It was deliberately accepted that the components might suffer damage provided the system continued to function.
A serious earthquake is generally accompanied by extensive destruction, which has to be repaired anyway after it has happened. The main problem is to ensure a supply of water for drinking and fire extinguishing which will operate reliably even under catastrophic conditions. The test strings assembled consisted in each case of two socketed pipes. At the ends, the spigot ends and sockets were sealed off with fittings and

DUKTUS
blank flanges which had air inlet and outlet openings. One pipe was held fixed in the axial and horizontal directions
The test string was filled with water, bled of air and raised to an internal pressure of 20 bars. This pressure was selected to give conditions as close as possible to those existing in practice. The joint was then subjected to continuous angular deflection (to the point of failure).

Results:

The pipes with BLS ${ }^{\circledR}$ joints could be deflected angularly by up to 24°.
Only then did the first leaks become apparent. For a 6 metre long pipe, an angular deflection of 24° is equal to an off-axis deflection of around 2.5 m .
Parts of the spigot ends of the pipes were damaged in the tests. The walls of the pipes were dented by the inner circumference of the socket, and the cement mortar coating flaked off at these points. Despite the extreme angular deflections and the dents which they caused, the joints remained serviceable and leaktight.

3.11 Urban water supply/replacement of concrete thrust blocks

DUKTUS

It is not just for special installation techniques and special loads that pipes and fittings with BLS ${ }^{\circledR}$ joints can be used. They are also an ideal system for urban water supply.

The advantages of the BLS® system for urban water supply are as follows:

- easy and above all safe to handle
- no special equipment required for assembly
- assembly is fast (about 5 min. per joint)
- angular deflectability up to a maximum of 5° (saves on fittings)
- joint rotatable through 360° with no loss of performance
- restrained (no thrust blocks required)
- clamping ring does away with any welding
- full range of fittings
- gate valves, butterfly valves, hydrants, etc. are available
- gate-valve-equipped intersections with no flanged joints are possible
- no restrictions on use (e. g. can be used for trenchless techniques and on steep slopes)

Pipes with BLS ${ }^{\circledR}$ joints are available to the following specifications

- laying length of 6 m
- nominal sizes of DN 80 to DN 1000
- internal protection: cement mortar lining
- external protection: zinc coating ($200 \mathrm{~g} / \mathrm{m}^{2}$) plus finishing layer
- alternative coatings are possible, e. g. cement mortar (ZMU) or Zinc Plus

Fittings are given an internal and external epoxy coating to EN 14901.

4 THE NON-POSITIVE LOCKING SYSTEM

DUKTUS

This Chapter deals only with non-positive locking push-in joints.
Dealt with below are the following non-restrained joints:

- The TYTON joint (TYT) to DIN 28603 - DN 80 to DN 1000

The TYTON joint has been the leading joint for pipes and fittings on the international market since 1965. It can be deflected angularly to a maximum of 5°, is resistant to the penetration of roots and is leaktight at any desired internal water pressure.

- The screwed socket joint (SMU) to DIN 28601 - DN 40 to DN 400

Available for certain fittings such as flanged sockets and collars Suitable above all for later connections into existing pipelines

- The bolted gland joint (STB) to DIN 28602 - DN 400 to DN 1000

Available for certain fittings such as flanged sockets and collars
Suitable above all for later connections into existing pipelines.
and the following joint restrained by friction locking

- The BRS ${ }^{\circledR}$ joint (also known as the TYTON ${ }^{\circledR}$-SIT-PLUS ${ }^{\circledR}$ joint)

The BRS joint is available in nominal sizes of DN 80 to DN 600 for pipes and fittings. This joint is based on the TYTON ${ }^{\circledR}$ joint. Replacing the TYTON® gasket with a TYTON ${ }^{\circledR}$-SIT-PLUS ${ }^{\circledR}$ gasket gives the friction locking BRS ${ }^{\circledR}$ system.

DUKTUS

Fields of use/advantages

Pipes and fittings with non-positive locking joints are designed primarily for conventional open trench laying. Pipe relining by pushing-in (see DVGW GW 320-1) using TYTON ${ }^{\circledR}$ pipes is an exception to this general rule.
Under DVGW Arbeitsblätter GW 320-1 to GW 324, even friction locking joints such as the $\mathrm{BRS}^{\circledast}$ joint are not suitable for trenchless installation techniques.
Our application technology department should be consulted in all cases before using non-positive locking joints in culvert and bridge pipelines and overhead pipelines and also before installation on steep slopes, in protective tubes and utility tunnels or in unstable soil conditions.
Whereas thrust blocks (e. g. to DVGW GW 310) normally need to be provided at non-restrained bends, branches, reductions, etc., this does not have to be done with the friction locking BRS ${ }^{\circledR}$ system. For thrust blocks not to have to be provided, the length of pipeline to be restrained must be sized as detailed in DVGW GW 368 or the whole of the pipeline must be laid with BRS ${ }^{\circledR}$ system joints.
Replacing or dispensing with thrust blocks constitutes the fundamental field of use of friction locking joint systems.
The sizing of thrust blocks and of the lengths of pipelines needing to be restrained is dealt with in outline in Chapter 7.

PFA - allowable operating pressure

Under EN 545:2010, ductile iron pipe with non-restrained push-in joints (e. g. TYTON ${ }^{\circledR}$ joints) are divided into pressure classes. These pressure classes are also known as C classes. The maximum PFA of a pipe corresponds to its pressure class (e. g. C $50=$ PFA of 50 bars). This applies only to non-restrained pipes. If the same pipe takes a restrained form, e. g. by means of a TYTON®-SIT-PLUS ${ }^{\circledR}$ gasket, this causes a drop in the allowable PFA.

Example: DN 200 - C 50
In a non-restrained form, this pipe has an allowable PFA of 50 bars. If a TYTON-SITPLUS ${ }^{\circledR}$ gasket is used, the PFA drops to 16 bars.
For the allowable PFA's of our BRS® joint as a function of the C class and the nominal size, see p. 129 on.

PMA $=1.2 \times$ PFA $=$ allowable maximum operating pressure
PEA $=1.2 \times$ PFA $+5=$ allowable (site) test pressure.
Ductile iron pipes and fittings can be used for negative pressures down to -0.6 bar (constant) or -0.9 bar (temporary).

TYTON ${ }^{\circledR}$ push-in joint to DIN 28603

Gasket

DN 80 to DN 600

Socket for fittings

Gasket

DN 700 to DN 1000

Socket for flanged sockets

DN	Dimensions [mm]			Weight [kg] ~				Max. angular deflection
				Socket			Gasket	
	$\varnothing d_{1}$	$\varnothing D^{11}$	t	Pipe	Fitting	Flanged socket		
80	98	142	84	3.4	2.8	2.4	0.13	5°
100	118	163	88	4.3	3.3	3.1	0.16	
125	144	190	91	5.7	4.5	4.0	0.19	
150	170	217	94	7.1	5.6	4.9	0.22	
200	222	278	100	10.3	8.0	7.1	0.37	
250	274	336	105	14.2	11.1	9.7	0.48	
300	326	385	110	18.6	14.3	12.5	0.67	
350	378	448	110	23.7	17.1	15.2	0.77	4°
400	429	500	110	29.3	20.8	18.6	1.1	
500	532	607	120	42.8	31.7	27.6	1.6	3°
600	635	732*	120	59.3	42.3	36.2	2.3	
700	738	849*	197	79.1	71.2	59.1	4.3	
800	842	960*	209	102.6	95.4	79.8	5.2	
900	945	1,073*	221	129.9	150.3	122.7	6.3	
1000	1,048	1,188*	233	161.3	186.9	152.1	8.3	

1) Guideline value; *) Smaller D's available on enquiry; PFA = C-Class, see pages 132-133

Our application technology department should be consulted in all cases before using non-positive locking joints in culvert and bridge pipelines and overhead pipelines and also before installation on steep slopes, in protective tubes and utility tunnels or in unstable soil conditions.
The BRS^{\circledR} joint is not suitable for trenchless installation techniques!

DN	max. PFA	Max. angular deflection	Weight [kg] ~ Gasket
80	32	3°	0.15
100	32	3°	0.17
125	25	3°	0.20
150	25	3°	0.24
200	25	3°	0.41
250	25	3°	0.56
300	25	3°	0.93
350	25	3°	1.15
400	16	2°	1.44
500	16	2°	2.20
600	10	2°	2.93

PFA: allowable operating pressure in bars; may be lower depending on the pressure class
$\mathrm{PMA}=1.2 \times \mathrm{PFA} ;$ PEA $=1.2 \times \mathrm{PFA}+5$

DN	Dimensions [mm]			Weight [kg] \sim			Max. angular deflection	PFA
	$\varnothing d_{1}$	$\varnothing D$	t	Screw ring	Slide ring	Gasket		
80	98	146	84	1.4	0.07	0.12		
100	118	166	88	1.9	0.08	0.15		
125	144	197	91	2.7	0.09	0.19		40
150	170	224	94	3.2	0.11	0.23	3°	
200	222	280	100	4.5	0.17	0.36		
250	274	336	106	6.3	0.21	0.50		
300	326	391	110	8.1	0.30	0.66		25
350	378	450	113	10.5	0.35	0.84		25
400	429	503	116	12.7	0.40	1.05		

PFA: allowable operating pressure in bars; may be lower depending on the pressure class
$\mathrm{PMA}=1.2 \times \mathrm{PFA} ; \mathrm{PEA}=1.2 \times \mathrm{PFA}+5$

Bolted gland joint (STB)

to DIN 28602

DN	Dimensions [mm]						Weight [kg] ~			Max. angular deflection	PFA
	$\varnothing \mathrm{d}_{1}$	\varnothing D	$\varnothing \mathrm{d}_{2}$	1	n	t	Bolted gland ring	$\begin{aligned} & \text { Gas- } \\ & \text { ket } \end{aligned}$	Tee-head bolt		
400	429	570	M 20	90	12	132	10.6	0.8	5.5	3°	25
500	532	680	M 20	100	16	138	15.0	1.1	7.7		25
600	635	790	M 20	100	16	143	20.9	1.5	7.7	2°	25
700	738	900	M 20	110	20	149	27.2	1.9	10.0		16
800	842	1,010	M 20	110	24	154	34.1	2.3	12.0	1.5°	16
900	945	1,125	M 20	120	24	160	44.0	2.9	12.5		16
1000	1,048	1,250	M 24	120	24	165	56.9	3.5	18.5		16

PFA: allowable operating pressure in bars; may be lower depending on the pressure class
PMA $=1.2 \times$ PFA; PEA $=1.2 \times$ PFA +5

DUKTUS

External coatings

- cement mortar coating (Duktus ZMU)
- zinc coating with finishing layer
- zinc-aluminium coating with finishing layer (Duktus Zinc PLUS)
- WKG coating

Internal coatings

- blast furnace cement
- high-alumina cement

For notes on the fields of use of the coatings see Chapter 6

DN	$\begin{gathered} \mathrm{d}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	C 30		C 40			C 50			C 64			C 100			Weight ZMU [kg]	S_{2}	S_{3}
		S_{1}	Weight [kg]	S_{1}	Weight [kg]	$\begin{gathered} \text { PFA } \\ \text { BRS® } \end{gathered}$	S_{1}	Weight [kg]	$\begin{gathered} \text { PFA } \\ \text { BRS } \end{gathered}$	S_{1}	Weight [kg]	$\begin{gathered} \text { PFA } \\ \text { BRS }^{\ominus} \end{gathered}$	S_{1}	Weight [kg]	$\begin{gathered} \text { PFA } \\ \text { BRS } \end{gathered}$			
80	98 ${ }_{\text {+2, }}$						3.5	79.1	16				4.7^{31}	94.0	32	19.5	4	
100	$118 \pm{ }_{-1.8}$						3.5	98.7	16				$4.7^{\text {3) }}$	118.4	32	24.0	4	
125	$144{ }_{-1,8}$						3.5	125.2	16	$4.8{ }^{3)}$	150.4	25	5.0	155.5	25	28.0	4	
150	$170{ }_{-2,9}$						3.7^{11}	154.3	16	$\begin{aligned} & 4.7^{2)} \\ & 5.0^{31} \end{aligned}$	$\begin{aligned} & 175.4 \\ & 183.8 \end{aligned}$	25	5.9	205.8	25	33.0	4	
200	222×13						3.9	209.1	16	$\begin{aligned} & 5.0^{2} \\ & 5.5^{31} \end{aligned}$	$\begin{aligned} & 245.4 \\ & 259.2 \end{aligned}$	25	7.7	323.1	25	43.0	4	
250	$274 * 1.1$			$4.2{ }^{\text {1) }}$	272.9	16	$5.2{ }^{27}$	316.3	25	6.1	347.4	25	9.5	468.1	25	52.0	4	
300	$326 \pm 1,3$			4.6	351.8	16	$5.7{ }^{\text {2) }}$	410.0	25	7.3	475.8	25				63.0	4	5
350	$378{ }_{-3,4}$	4.7	416.1	$6.0^{2)}$	496.0	25	6.6	524.8	25	8.5	615.6	25				72.0	5	
400	$429+1.5$	4.8	513.3	$6.4{ }^{21}$	601.3	16	7.5	661.5	16	9.6	775.4	16				82.0	5	
500	532 ± 18	5.6	707.4	7.5	837.4	16	9.3	959.7	16							101.0	5	
600	$635{ }_{-4,0}$	6.7	982.1	8.9	1,162.0	10										121.0	5	
700	$738 \pm{ }_{-4,3}$	7.8	1,268.8	10.4	1,516.0	-										140.0	6	
800	842 ± 1.5	8.9	1,631.8													160.0	6	
900	$945{ }_{*}^{+1.8}$	10.0	1,994.4													179.0	6	
1000	1,048*5,0	11.1	2,395.9													199.0	6	

1) C40 under EN545:2006; 2) K9 under EN 545:2006; 3) K10 under EN 545:2006
s_{1}) Minimum wall thickness in mm ; s_{2}) Nominal thickness of cement mortar lining in $\mathrm{mm} ; \mathrm{s}_{3}$) Nominal thickness of ZMU in mm ; Weight of the pipes = theoretical figures in kg inc. cement mortar lining, zinc aluminium coating and epoxy finishing layer; Weight of $\mathrm{ZMU}=$ additional weight of ZMU in kg ;

PFA: allowable operating pressure in bars
$\mathrm{PMA}=1.2 \times$ PFA; PEA $=1.2 \times \mathrm{PFA}+5$. The PFA of TYTON ${ }^{\circledR}$ pipes corresponds to their C class Inside red frames: all coatings are possible; outside: only Zinc Plus

4.3 Fittings with non-positive locking joints

DUKTUS

Compatibility

Except where otherwise noted, all fittings comply with DIN 28603 (TYTON®). This means that TYTON ${ }^{\circledR}$-SIT-PLUS ${ }^{\circledR}$ gaskets can also be inserted in their sockets, thus producing the friction locking BRS ${ }^{\circledR}$ push-in joint.

Laying lengths

Except where otherwise noted, the laying lengths Lu of fittings conform to the A series in EN 545.

Flanged fittings (see Chapter 5)

When ordering flanged fittings, it is essential to give the PN pressure rating required. Accessories such as hex-head bolts, nuts, washers and gaskets must be obtained from specialist suppliers.

Coating (see Chapter 6)

Except where otherwise specified, all the fittings shown below are provided internally and externally with an epoxy coating at least $250 \mu \mathrm{~m}$ thick.
The coating complies with EN 14901 and meets the requirements of the Quality Association for the Heavy Duty Corrosion Protection of Powder Coated Valves and Fittings (GSK).
All fittings to EN 545, Annex D.2.3., can thus be installed in soils of any desired corrosiveness.

RAL GÜTEZEICHEN
SCHWERER KORROSIONSSCHUTZ VON ARMATUREN UND FORMSTÜCKEN

Allowable operating pressure (PFA)

(except where otherwise specified)

DN	PFA ${ }^{11}$ [bar]				
	TYTON ${ }^{\text {® }}$	BRS ${ }^{2)}$	Screwed socket joint	Bolted gland joint	Flange
80	100	32	40	-	$P F A=P N$
100					
125	64	25			
150					
200					
250	50				
300					
350			25		
400	40	16		25	
500					
600		10			
700	30			16	
800					
900					
1000					

1) PFA: allowable operating pressure in bars. PMA $=1.2 \times \mathrm{PFA}$; $\mathrm{PEA}=1.2 \times \mathrm{PFA}+5$
2) PFA depends on the C class of the pipe used, see pp. 132-133

Scope of supply

The socket fittings supplied include the gaskets required and with screwed socket joints and bolted gland joints they include the additional components required (slide rings, screw rings, bolted gland rings, tee-head bolts). For flanged joints, the gaskets, bolts, nuts and washers are not included in the scope of supply.

Socket fittings

MMK 11 fittings

$111 / 4^{\circ}$ double socket bends
to EN 545

$11^{1 / 4}{ }^{\circ}$

DN	Dimensions [mm] \qquad	PFA [bar]	Weight [kg] ~
80	30	100	7.5
100	30	100	8.5
125	35		12.8
150	35	64	16.5
200	40		24.9
250	50		34.2
300	55	50	43.0
350	60		60.5
400	65		70.9
500	75	40	100.0
600	85		140.0
700	95		190.7
800	110	30	271.2
900	120	3	393.5
1000	130		495.7

MMK 22 fittings
$221^{1 / 2}$ double socket bends
to EN 545
$)$

DN	Dimensions [mm] L_{u}	PFA [bar]	Weight [kg] ~
80	40	100	7.7
100	40	100	9.4
125	50		13.3
150	55	64	17.5
200	65		21.0
250	75		30.7
300	85	50	40.4
350	95		64.6
400	110		80.2
500	130	40	100.4
600	150		140.5
700	175		185.7
800	195	30	315.8
900	220	3	456.0
1000	240		575.9

MMK 30 fittings
30° double socket bends
to DIN 28650
$)$

DN	Dimensions [mm] L_{u}	PFA [bar]	Weight [kg] ~
80	45	100	7.7
100	50	100	9.7
125	55		14.0
150	65	64	18.0
200	80		22.0
250	95		32.0
300	110	50	43.2
350	125		71.5
400	140		85.3
500	180	40	109.2
600	200		155.9
700	230		275.3
800	260	30	345.9
900	290	3	496.3
1000	320		630.3

MMK 45 fittings
45° double socket bends
to EN 545
r

DN	Dimensions [mm] L_{u}	PFA [bar]	Weight [kg] ~
80	55		8.1
100	65	100	10.0
125	75		14.1
150	85	64	18.4
200	110		24.6
250	130		35.7
300	150	50	48.7
350	175		76.9
400	195		86.0
500	240	40	127.0
600	285		183.6
700	330		296.7
800	370	30	406.1
900	415	3	577.9
1000	460		737.2

MMQ fittings

90° double socket bends
to EN 545

DN	Dimensions [mm] L_{u}	PFA [bar]	Weight [kg] ~
80	100	100	8.2
100	120	100	10.6
125	145		15.6
150	170	64	19.6
200	220		30.9
250	270		50.6
300	320	50	69.1
$350{ }^{1)}$	410		96.8
$400{ }^{1)}$	430		119.0
$500{ }^{1)}$	550	40	199.4
$600{ }^{1)}$	645		365.0
$700{ }^{1)}$	720		449.0
$800{ }^{17}$	800	30	613.0

1) To manufacturer's standard

MK 11 fittings
$111 / 4^{\circ}$ single socket bends
to manufacturer's standard

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	L_{u}	I_{u}		
80	240	30	100	7.6
100	243	33		9.8
125	261	36	64	14.0
150	284	40		18.0
200	311	46		27.0
250	255	50	50	37.8
300	260	60		47.0
350	235	65		46.0
400	238	70	40	66.9
500	250	85		83.2
600	287	95		163.0
700	340	110	30	249.0
800	375	125		286.0

MK 22 fittings
$221 / 2^{\circ}$ single socket bends
to manufacturer's standard

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	L_{u}	I_{u}		
80	248	38	100	8.1
100	253	43		9.7
125	274	49	64	15.1
150	299	55		18.4
200	331	66		29.2
250	260	75	50	37.8
300	265	90		50.2
350	270	100		52.0
400	278	110	40	76.7
500	300	135		97.0
600	357	155		163.0
700	420	190	30	336.0
800	455	205		460.0

MK 30 fittings
30° single socket bends
to manufacturer's standard

	Maße [mm]			
DN	Lu	I_{4}	PFA [bar]	Masse [kg] ~
80	253	44	100	7.4
100	260	50		10.8
125	283	57	64	15.1
150	309	65		20.0
200	345	80		30.8
250	270	95	50	38.9
300	280	110		52.9
350	295	125		56.0
400	308	140	40	76.5
500	335	170		107.0
600	412	200		178.0
700	480	250	30	286.0
800	510	260		350.0

MK 45 fittings
45° single socket bends
to manufacturer's standard

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	L_{u}			
80	265	55	100	8.4
100	274	65		10.8
125	301	76	64	16.2
150	331	87		20.5
200	374	109		33.5
250	300	130	50	44.3
300	315	155		59.4
350	345	175		68.0
400	368	200	40	91.0
500	405	240		187.0
600	529	285		250.5
700	610	380	30	441.0
800	625	370		-

MQ fittings
90° single socket bends
to manufacturer's standard
DUKTUS

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	L_{u}	I_{u}		
80	312	102	100	9.0
100	333	123		11.2
125	374	149	64	18.4
150	419	174		25.4
200	491	226		43.8
250	583	280	50	76.1
300	660	330		83.2
350	580	410		139.0
400	625	430	40	186.3
500	715	550		235.4
600	805	645		314.0
700	900	720	30	473.0
800	1,080	800		644.5

U fittings

Collars
to EN 545

DN	Joint	L [mm]	PFA [bar]	Weight ${ }^{17}$ [kg]
80	Screwed socket	160	40	7.7
100		160		9.3
125		165		12.5
150		165		14.6
200		170		22.2
250		175		30.0
300		180		37.2
350		185	25	47.0
400		190		60.3
500	Bolted gland	200		119.3
600		210		162.7
700		220	16	210.3
800		230		249.9
900		240		305.0
1000		250		386.0

1) Not including screw ring and bolted gland ring of the respective joints

MMB fittings
All-socket tees with 90° branch
to EN 545
DUKTUS

1) To manufacturer's standard; 2) Screwed socket joint; weight not including screw ring

MMC fittings
All-socket tees with 45° branch
to manufacturer's standard
DUKTUS

DN	dn	Dimensions [mm]			Max. PFA [bar]	Weight [kg] ~
		L_{u}	${ }_{u}$	z		
80	80	270	200	200	16	20.5
100	80	300	250	250	16	23.1
	100					27.9
125	100	350	250	250	16	37.5
	125					38.3
150	80	380	300	300	16	30.3
	100					33.1
	150					35.9
200	100	500	360	360	16	52.2
	150		380	380		57.5
	200					59.8
250	100	600	395	395	16	61
	150					64.2
	200		430	430		93.6
	250		460	460		111.9
300	100	700	430	430	16	81
	150					84.2
	200		500	500		85.2
	250					117.4
	300		525	525		131.2

$\xrightarrow{2}$

DN	dn	Dimensions [mm]			Max. PFA [bar]	Weight [kg] ~
		L_{u}	Iu	z		
350	150	700	470	470	16	143.5
	200		510	510		149.8
	250		530	530		160.5
	300		570	610		165.2
	350	880	690	760		183
400	100	440	480	440	16	119
	125		490	450		125.6
	150					127.8
	200	640	570	580		144.5
	300	850	650	700		165.6
	400			650		193
500	100	450	590	515	16	150.8
	150					160
	200	740	620	550		200.6
	250		640	620		209.3
	300		720	680		213.5
	400	850		750		241
	500	1,040	845	845		357
600	150	750	750	620	16	215
	200					218.5
	250		775	680		222
	300		800	740		229.5
	400	1,150		765		367
	500	1210	920	915		448
	600		985	975		471
700	200	575	825	675	16	272
	300	925	885	810		398
	400		940	890		408.5
	500	1,080	1,020	990		596.3
	600	1,380	1,070	1,055		653
	700		1,140	1,140		709
800	600	1,250	1,150	1,110	16	699.5
	800	1,550	1,275	1,275		964

MMR fittings
Double socket tapers
to EN 545

DN	dn	L_{u} [mm]	Max. PFA [bar]	Weight [kg] ~
100	80	90	100	9.0
125	80	140	64	9.9
	100	100		9.8
150	80	190		14.6
	100	150		15.3
	125	100		15.4
200	100	250		18.3
	125	200		18.7
	150	150		18.7
	125	300	50	30.1
250	150	250		33.6
	200	150		33.9
300	150	350		46.6
	200	250		41.9
	250	150		42.8
350	200	360		45.3
	250	260		44.8
	300	160		43.6
400	250	360	40	70.2
	300	260		65.5
	350	160		68.0
500	350	500		138.3
	400	500		146.7
600 ${ }^{11}$	400	500		177.8
	500	500		181.8
700 ${ }^{11}$	500	500	30	331.5
	600	500		346.2
800	600	480		276.3
	700	280		247.0
900	700	480		363.0
	800	280		340.0
1000	800	480		453.0
	900	280		442.0

[^10]O fittings
Spigot end caps
to manufacturer's standard
匹

DN 300 to DN 600

DN	Dimensions [mm]		Max. PFA [bar]	Weight $[\mathrm{kg}] \sim$
	D	t 1		4.5
100	146	84	25	4.8
125	166	88	25	6.0
150	193	91	25	8.0
200	224	94	25	12.0
250	280	100	25	19.0
300	336	105	25	27.0
350	391	110	25	34.0
400	450	110	25	45.0
500	503	110	25	73.0
600	598	120	25	110.0

P fittings
 P socket plugs for TYTON ${ }^{\circledR}$ joints and screwed sockets

to manufacturer's standard
DUKTUS
ᄃ

DN	Joint	Dimensions [mm] L	Max. PFA [bar]	Weight [kg] ~
40	TYT/Screwed socket	82	16	1
80	TYT/Screwed socket	90		3
100	TYT/Screwed socket	98		4
125	TYT/Screwed socket	99		6
150	TYT/Screwed socket	103		7.5
200	TYT/Screwed socket	108		12
250	TYT/Screwed socket	120		18
300	TYT/Screwed socket	125		25.5
350	TYT	125		37.5
400	TYT	125		46.5
500	TYT	173		80

When P socket plugs are used in screwed sockets joints, screw rings for P socket plugs must also be used. See next page.
to manufacturer＇s standard

DN	Joint	Dimensions［mm］ L	Max．PFA［bar］	Weight［kg］～
40	Screwed socket	65	16	1.6
50	Screwed socket	67		1.8
80	Screwed socket	72		2.9
100	Screwed socket	75		3.4
125	Screwed socket	78		4.4
150	Screwed socket	81		5.5
200	Screwed socket	86		9
250	Screwed socket	92		13
300	Screwed socket	94		17.5

Screw rings for P socket plugs are used in conjunction with P socket plugs for closing off screwed socket joints．See previous page．

PX fittings

Screw plugs for screwed socket joints
to manufacturer's standard

DN	Joint	Dimensions [mm]				Max. PFA

Flanged socket fittings

EU fittings

Flanged sockets
to EN 545

DN	Joint	Dimensions [mm]			Weight [kg] ${ }^{2}$ ~			
		L_{u}	$\mathrm{z}^{1)}$	+/-	PN10	PN16	PN25	PN40
80	TYT	130	86	40	7.5			
	Screwed socket				7.8		Available on enquiry	
100	TYT	130	87	40	10.2		10.7	
	Screwed socket				10.2		Available on enquiry	
125	TYT	135	91	40	11.4		12	13.2
	Screwed socket				12.8		Available on enquiry	
150	TYT	135	92	40	15.5		18.5	19.5
	Screwed socket				15.5		Available on enquiry	
200	TYT	140	97	40	19.8	19.8	22	26.5
	Screwed socket				20.5	20.5	Available on enquiry	

1) Guideline dimension for installation, 2) Weight of screwed socket joint or bolted gland joint not including screw ring or bolted gland ring respectively

\square

DN	Joint	Dimensions [mm]			Weight [kg] ${ }^{\text {2) }}$ ~			
		L_{u}	$z^{1)}$	+/-	PN10	PN16	PN25	PN40
250	TYT	145	102	40	31.7	31.7	33.7	40.2
	Screwed socket				30.7	30.7	Available on enquiry	
300	TYT	150	107	40	44	44	49.8	54
	Screwed socket				40	40	Available on enquiry	
350	TYT	155	112	40	52	56	60	70.5
	Screwed socket				48	49	Available on enquiry	
400	TYT	160	117	40	63.6	67.6	83.6	105.6
	Screwed socket				54.1	59.6	Available on enquiry	
	Bolted gland				68.1	71.6	Available on enquiry	
500	TYT	170	127	40	92.3	105.8	115.8	126.8
	Bolted gland				99.3	115.8	Available on enquiry	
600	TYT	180	137	40	118.6	141.6	143.1	184.1
	Bolted gland				138.1	159.6	Available on enquiry	
700	TYT	190	147	40	171.8	185.2	195	-
	Bolted gland				186	186	A.o.e.	
800	TYT	200	157	40	236.2	256.2	276.2	-
	Bolted gland				238.5	250	A.o.e.	
900	TYT	210	167	40	274.2	271.2	345	-
	Bolted gland				235.2	256.2	A.o.e.	
1000	TYT	220	177	40	332.1	347.1	442.1	-
	Bolted gland				312.7	362.7	A.o.e.	

1) Guideline dimension for installation, 2) Weight of screwed socket joint or bolted gland joint not including screw ring or bolted gland ring respectively
$\boxed{ }$

DN	Dimensions [mm]				Weight [kg] ~		
	L_{1}	L_{2}	c	$\square d$	PN10	PN16	PN25 PN40
80	165	145	110	180		15	
100	180	158	125	200		8.4	18.4

MMA fittings
Double socket tees with flanged branch
to EN 545

)Ic

DN	dn	Dimensions [mm]		Weight [kg] ~			
		$\mathrm{L}_{\text {u }}$	I_{u}	PN10	PN16	PN25	PN40
80	40^{11}	170	155	10.8			
	50^{11}		160	11.4			
	80		165	12.9			
100	401)	170	170	12.6			
	$50^{1)}$		170	13.2			
	80		175	14.5			
	100	190	180	15.8		16.3	
125	401)	170	185	16			
	80		190	18			
	100	195	195	19.3		19.8	
	125	255	200	21.6		22.1	23.6
150	401)	170	195	19.2			
	501)		200	19.9			
	80		205	21.3			
	100	195	210	22.7		23.2	
	150	255	220	27.4		29.4	30.9
200	401)	175	230	26.7			
	501)		230	28			
	80		235	28.6			
	100	200	240	30.4		30.9	
	150	255	250	36.1		37.1	39.1
	200	315	260	42.2	41.7	43.7	49.2

1) To manufacturer's standard

${ }^{2}$

DN	dn	Dimensions [mm]		Weight [kg] ~			
		L_{u}	I_{u}	PN10	PN16	PN25	PN40
250	80	180	265	37.9			
	100	200	270	39.7		40.2	
	150	260	280	46.3		47.3	49.3
	200	315	290	52.9	52.9	54.9	60.4
	250	375	300	61	60.5	64.5	74.5
300	80	180	295	47.2			
	100	205	300	50		50.5	
	150	260	310	57		58	60
	200	320	320	65	65	67	72.5
	300	435	340	83.6	83.1	88.6	104.6
350	100	205	330	59.3			59.8
	200	325	350	77.2	76.7	79.2	84.2
	350	495	380	106	109.6	117.6	138.6
400	80	185	355	67.8			
	100	210	360	71.4		71.9	
	150	270	370	81.4		82.4	
	200	325	380	91.1	90.6	92.6	98.1
	300	440	400	113.5	113.5	118.5	134.5
	400	560	420	135.6	140.6	152.6	185.6
500	$80^{1 /}$	215	415	103			
	100		420				
	150 ${ }^{\text {1) }}$	330	430	126		128	
	200		440	127.9	127.9	129.9	134.9
	250 ${ }^{1)}$	450	450	157	156	161	173
	$300{ }^{1 /}$		460	156.7	155.7	161.7	176.7
	$350{ }^{\text {1) }}$	565	470	182	188	199	230
	400		480	182.5	188.5	199.5	233.5
	500	680	500	212.1	227.1	239.1	273.1

1) To manufacturer's standard

DN	dn	Dimensions [mm]		Weight [kg] ~			
		L_{u}	I_{u}	PN10	PN16	PN25	PN40
600	801)	340	475	163			
	1001)		480	164		165	
	$150{ }^{1 /}$		490	166		167	168
	200	340	500	168.5	168.5	170.5	175.5
	250 ${ }^{1 /}$	570	510	224	224	228	238
	$300{ }^{11}$		520	230	230	235	251
	$350{ }^{11}$		530	233	236	245	266
	400		540	233.3	239.3	250.3	284.3
	500 ${ }^{1 /}$	800	560	303	317	327	361
	600		580	308.7	335.7	349.7	401.7
700	80^{11}	345	505	250			-
	100		510	250		250	
	$150{ }^{1 /}$		520	262		263	
	200		525	255.3	255.3	257.3	
	$300{ }^{11}$	575	540	327	327	343	
	400		555	386.7	392.7	403.7	
	$500{ }^{11}$	925	570	432	446	480	
	$600{ }^{11}$	925	585	457	481	502	
	700	925	600	481	496	531	
800	$100{ }^{1 /}$	350	570	325		326	-
	$150{ }^{1 /}$	303	580			318	
	200	350	585	316.9	316.9	318.9	
	$250{ }^{11}$	360		350	349	352	
	$300{ }^{11}$	580	600	417	417	422	
	400		615	405.4	411.4	422.4	
	$500{ }^{11}$	1,045	630	590	605	617	
	600		645	579	606	620	
	800		675	612	611	680	

[^11]

DN	dn	Dimensions [mm]		Weight [kg] ~			
		L_{u}	Iu	PN10	PN16	PN25	PN40
900	100 ${ }^{\text {1) }}$	355	630			452	-
	150 ${ }^{1 /}$	355	640			444	
	2001)	355	645	453.5	453.5	455.5	
	250 ${ }^{1}$	590	655	474	474	477	
	3001)	590	660	561	561	561	
	400	590	675	560	565	577	
	$50{ }^{1)}$	1,170	690	813	827	861	
	600		705	810.5	837.5	851.5	
	900		750	921	969	1,090	
1000	200	360	705	556	556	558	-
	$250{ }^{11}$	400		520	519	522	
	$300{ }^{1 /}$	595	720	670	670	675	
	400	595	735	679.5	685	696.5	
	600	1,290	765	1,029	1,056	1,070	
	$800{ }^{11}$		795	1,044	1,063	1,112	
	$900{ }^{1)}$		810	1,128	1,147	1,196	
	1000		825	1,149	1,139	1,217	

1) To manufacturer's standard

Nominal size of connection $R^{\prime \prime}$	Radius	For pipes of nominal sizes	Dimensions [mm]				
$2^{\prime \prime}$	98	$D N$	$\varnothing d_{1}$	$\varnothing d_{2}$	s	h	$[\mathrm{~kg}] \sim$

[^12]DUKTUS

All fittings produced by member companies of the "Fachgemeinschaft Gussrohrsysteme/ European Association for Ductile Iron Pipe Systems (FGR/EADIPS)" carry the "FGR" mark indicating that all the guidelines required for the award of the "FGR Quality Mark" have been complied with.
As well as this, all fittings are marked with their nominal sizes and bends are marked with their respective angles.
Flanged fittings have the pressure ratings PN 16, 25 or 40 cast or stamped onto them. No pressure rating appears on flanged fittings for PN 10 or on any socket fittings.
To identify their material as "ductile cast iron", fittings are marked with three raised dots arranged in a triangle (\bullet) on their outer surface.
In special cases, there may be further markings which are specified as needing to be applied.

4.4 Installation instructions TYTON ${ }^{\circledR}$ push-in joints

DUKTUS

Applicability

These installation instructions apply to ductile iron pipes and fittings to EN 545 and DIN 28650 with TYTON ${ }^{\circledR}$ push-in joints to DIN 28 603. There are separate installation instructions for installation and assembly when using restrained joints (BLS® and BRS ${ }^{\circledR}$ joints) and/or for pipes with a cement mortar coating (ZMU).
For recommendations for transport, storage and installation, see p. 289 ff .
For laying tools and other accessories, see Chapter 7.

Construction of the joint

DN 80 to DN 600

DN 700 to DN 1000 (long socket)

Cleaning

Clean the surfaces of the seating for the gasket and the retaining groove which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples) from them.
Use a scraper (e. g. a bent screwdriver) to clean the retaining groove.

DUKTUS

Clean the spigot end back to the line marking. Remove any fouling and any excess paint (paint humps, bubbles or pimples).

Carefully apply a thin coat of the lubricant supplied by the pipe manufacturer only to the sealing surface identified by the oblique lines.
Note: Do not apply any lubricant to the retaining groove (the narrow groove).
In hot, dry weather (summer) the lubricant should only be applied immediately before assembly as otherwise it may dry out.
In cold weather (winter) the lubricant and the seal should be kept warm until shortly before use, thus making assembly considerably easier.

DUKTUS

Assembling the joint

Inserting the TYTON ${ }^{\circledR}$ gasket.
Clean the TYTON ${ }^{\circledR}$ gasket and make a loop in it so that it is heart-shaped.

Fit the TYTON ${ }^{\circledR}$ gasket into the socket so that the hard-rubber claw on the outside engages in the retaining groove in the socket.

Then press the loop flat.

If you have any difficulty in pressing the loop flat, pull out a second loop on the opposite side. These two small loops can then be pressed flat without any difficulty.

DUKTUS

The inner edge of the hard-rubber claw of the gasket must not project below the locating collar.

Right

Apply a thin layer of lubricant to the gasket.
In hot, dry weather (summer) the lubricant should only be applied immediately before assembly as otherwise it may dry out.
In cold weather (winter) the lubricant and the seal should be kept warm until shortly before use, thus making assembly considerably easier.

Apply a thin layer of lubricant to the spigot end - and particularly to the bevel - and then insert the spigot end into the socket until it is resting against the gasket in a centralised position. The axes of the pipe or fitting already installed and the fitting or pipe which is being connected to it should be in a straight line.

Do not remove whatever is being used to lift the pipe until the joint has been fully assembled.

Push the spigot end into the socket until the first marking line can no longer be seen.

Once the joint has been assembled, check the seating of the gasket with the depth gauge around the entire circumference. The gauge should penetrate into the gap between the spigot end and the socket to a uniform depth all round the circumference. If it is able to penetrate deeper at one or more points, it is possible that the gasket has been pushed out of the retaining groove at these points and hence that there will be leaks there. If this is the case, the joint must be disassembled and the seating of the gasket checked.

Angular deflection

Once the joint has been fully assembled, pipes and fittings can be deflected angularly as follows:

```
Up to DN 300 - max. of 5
    DN 400 - max. of 4
    DN1000 - max. of 3}\mp@subsup{}{}{\circ
```

For a pipe length of $6 \mathrm{~m}, 1^{\circ}$ of angular deflection causes the axis of the pipe to lie 10 cm off the axis of the pipe or fitting installed previously, i.e. $3^{\circ}=30 \mathrm{~cm}$.

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 364). Cut pipes must be bevelled at the cut end to match the original spigot end.

The bevel must be made as shown in the diagram.

The cut surface must be re-painted (see p. 365).
Copy the line markings from the original spigot end to the new spigot end which has been cut.

Disassembly

If newly installed pipes or fittings have to be disassembled, this can be done without any special tools. Either use the laying tool to do this or move the pipe or fitting gently to and fro while pulling on it.

Pipelines fitted with TYTON ${ }^{\circledR}$ push-in joints which have already been in place for quite some time can be disassembled as follows.

With a laying tool

With a clamp and a jack

4.5 Installation instructions
 BRS ${ }^{\circledR}$ push-in joints

DUKTUS

Applicability

These installation instructions apply to ductile iron pipes and fittings to EN 545 and DIN 28650 with restrained BRS ${ }^{\circledR}$ push-in joints to DIN 28 603. There are separate installation instructions for the installation and assembly of other restrained joints and/or of pipes with a cement mortar coating (ZMU).
For recommendations for transport, storage and installation, see p. 289 ff .
For laying tools and other accessories, see Chapter 7.
The number of joints which have to be restrained should be decided on in accordance with DVGW Arbeitsblatt GW 368 (see p. 301 ff).
Our Applications Engineering Division should always be consulted before joints of the present type are used in culvert or bridge pipelines and before they are laid on steep slopes or in casing tubes or pipes or in utility tunnels or in unstable soil. The BRS^{\circledR} joint is not suitable for trenchless installation techniques!

Construction of the joint

Important! There are three notable features by which the TYTON ${ }^{\circledR}$-SIT-PLUS ${ }^{\circledR}$ gasket can be recognised:

The marking "TYTON®-SIT-PLUS"

Cleaning

Clean the surfaces of the seating for the gasket and the retaining groove which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples) from them.

Use a scraper (e. g. a bent screwdriver) to clean the retaining groove.

Clean the spigot end back to the line marking. Remove any fouling and any excess paint (paint humps, bubbles or pimples).

Assembling the joint

Insert the TYTON ${ }^{\circledR}$-SIT-PLUS ${ }^{\circledR}$ gasket as specified in the installation instructions for the TYTON® push-in joint (see p. 164 ff).

Clean the TYTON ${ }^{\circledR}$-SIT-PLUS ${ }^{\circledR}$ gasket, make a loop in it so that it is heart-shaped, and fit it into the seating for the gasket.

Important! The point of the loop must always be between two segments.
Apply a thin layer of lubricant to the TYTON®-SIT-PLUS ${ }^{\circledR}$ gasket once it has been fitted into the seating.
Take the profiled identifying ring marked with a stripe of white paint and slide it onto the spigot end.
Apply a thin layer of lubricant to the spigot end - and particularly to the bevel - and then insert the spigot end into the socket until it is resting against the TYTON ${ }^{\circledR}$-SIT-PLUS ${ }^{\circledR}$ gasket and is centralised. Fit the laying tool to the socket and the spigot end and use it to pull the spigot end of the pipe or fitting being inserted into the socket of the pipe already laid. Avoid any angular deflection when doing so.

Push the spigot end into the socket until the first marking line can no longer be seen. It is now no longer permissible for either part of the joint to be turned.

Locking

Pull or press the pipe out of the socket, e. g. with a laying tool, until the stainless steel segments engage.

DUKTUS

Do not remove whatever is being used to lift the pipe until the joint has been fully assembled.

Identification of the joint

As a durable means of identifying the restrained push-in joint, we supply a profiled rubber ring carrying a stripe of white paint on its circumferential surface.
The ring should be positioned as shown in the illustration before the joint is assembled.

Angular deflection

Once the joint has been fully assembled, pipes and fittings can be deflected angularly as follows:

```
DN 80 to DN 350 - max. of 3
DN 400 to DN 600 - max. of 2
```

For a pipe length of $6 \mathrm{~m}, 1^{\circ}$ of angular deflection causes the axis of the pipe to lie approx. 10 cm off the axis of the pipe or fitting installed previously, i.e. $3^{\circ}=30 \mathrm{~cm}$.

Note on installation

Make sure that, as a function of the internal pressure and the tolerances on joints, it is possible for extensions of up to about 8 mm per joint to occur.
To allow for the travel of the pipeline when it extends when pressure is applied, joints at bends should be set to the maximum allowable angular deflection in the negative direction.

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 364).
Copy the line markings from the original spigot end to the new spigot end which has been cut.

Disassembly

Push the pipe into the socket until it is in abutment.
Apply lubricant to the disassembly plates and, using the striking block, drive them into the gap between the socket and the pipe all round. Then disassemble the joint with the laying tool or the dissembling clamp.

Striking block with disassembly plates

A dismantling tool consists of a striking block and the number of disassembly plates shown in the table below.

DN	80	100	125	150	200	250	300	350	400	500	600
Number of plates	4	4	5	6	8	10	12	14	16	19	23

4.6 Installation instructions
 Screwed socket joints

Applicability

These installation instructions apply to ductile iron fittings to EN 545 with screwed socket joints to DIN 28601.
For recommendations for transport, storage and installation, see p. 289 ff .
For laying tools and other accessories, see Chapter 7.

Construction of the joint

Cleaning

Clean the surfaces of the seating for the gasket and the thread which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples) from them. Use a tool such as a wire brush to clean the seating for the gasket and the thread.

Clean the front pressure-applying face and the thread of the screw ring thoroughly.

Clean the spigot end for a length of at least 300 mm . Remove any fouling and any excess paint (paint humps, bubbles or pimples).

Assembling the joint

Slide the screw ring, slide ring and gasket onto the spigot end in that order.
Apply a good coat of the lubricant supplied by the pipe manufacturer to the spigot end.

Insert the spigot end into the socket, centralise it and check the depth of insertion.

Using a yarning tool, press the gasket into the sealing chamber and then slide the slide ring forward until it is resting against the gasket.

Screw the screw ring in as far as possible by hand.

Do not remove whatever is being used to lift the pipe

Tightening with a hammer for nominal sizes up to DN 150

DN	Weight of hammer kg ~
Up to 100	$1.5-2$
Up to 150	$2.5-3$

Hook spanner

Tighten the screw ring with a hammer or a drift until it cannot be turned any further. Screw rings of DN 300 nominal size and above should be centralised as they are being tightened.

The centralising may for example be done with two yarning tools which are inserted between the crown area of the pipe and the screw ring until there is an even gap all the way round between the pipe and the screw ring.

Tightening with a wooden drift for nominal sizes of DN 200 and above

DN	Length in mm	Wooden drift Cross-section in mm	Weight in $\mathrm{kg} \sim$
Up to 300	2,250	120×120	25
Up to 400	2,250	150×150	40

Angular deflection

Once the joint has been fully assembled with the pipe in a centralised position, the pipe can be deflected angularly by up to 3°.

For a pipe length of $6 \mathrm{~m}, 1^{\circ}$ of angular deflection causes the axis of the pipe to lie approx. 10 cm off the axis of the fitting installed previously, i.e. $3^{\circ}=30 \mathrm{~cm}$.

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 364 ff).

Disassembly

Unscrew the screw ring. Pull the spigot end out of the socket.

4.7 Installation instructions Bolted gland joints

Applicability

These installation instructions apply to ductile iron fittings to EN 545 with bolted gland joints to DIN 28602.
For recommendations for transport, storage and installation, see p. 289.
For laying tools and other accessories, see Chapter 7.

Construction of the joint

Cleaning

Clean the surfaces of the seating for the gasket which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples) from them. Use a tool such as a wire brush to clean the seating for the gasket.

Clean the front pressure-applying face of the bolted gland ring thoroughly.

Clean the spigot end for a length of at least 300 mm . Remove any fouling and any excess paint (paint humps, bubbles or pimples).

Assembling the joint

Slide the bolted gland ring and the gasket onto the spigot end.
Important! Do not use any lubricant!

Using a piece of lifting equipment, insert the spigot end into the socket, centralise it and check the depth of insertion. Press the gasket into the sealing chamber to a uniform depth all round.

Slide the bolted gland ring in behind the gasket and centralise it with two hardwood wedges, which can easily be fitted in at the top between the bolted gland ring and the spigot end.

When the bolted gland ring is accurately centralised, it is then easy for the tee-head bolts to be inserted.

Do not remove whatever is being used to lift the
pipe until the joint has
Hardwood wedges

DUKTUS

Insert the tee-head bolts through the flange and the bolted gland ring. Tighten the nuts as far as you can finger-tight, evenly all round. Then tighten the nuts in sequence with a ring spanner, always tightening two diametrically opposed nuts at a time by about half a turn to one full turn.

The gasket has been correctly compressed when the bolted gland ring has been pressed into the gasket to a depth of at least 6 mm . How deep it has been pressed in can be found by measuring the overall depth of the bolted gland ring, and the depth from the outer face of the bolted gland ring to the gasket once the bolts have been tightened. The depth for which it is pressed in should be as even as possible all round for the given bolted gland joint.

At least three measurements therefore have to be made at each joint.
Check the correct depth of insertion again.
Re-paint the tee-head bolts and the nuts with a standard bitumen paint.

Angular deflection

Once the joint has been assembled with the pipe centralised, pipes and fittings can be deflected angularly by.

$$
\begin{aligned}
& \text { Up to } \mathrm{DN} 500-\max \text {. of } 3^{\circ} \\
& \text { DN } 700-\max \text {. of } 2^{\circ} \\
& \text { DN } 1000 \text { - max. of } 1.5^{\circ}
\end{aligned}
$$

For a pipe length of $6 \mathrm{~m}, 1^{\circ}$ of angular deflection causes the axis of the pipe to lie approx. 10 cm off the axis of the pipe or fitting installed previously, e. g. $3^{\circ}=30 \mathrm{~cm}$.

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 364 ff).

Disassembly

Unscrew the nuts and slide back the bolted gland ring. Pull the spigot end out of the socket.

DUKTUS

5 FLANGED JOINTS, PIPES AND FITTINGS

DUKTUS

The flanged joints described in this Chapter comply with EN 1092-2. The flanges may be integrally cast, bolted on or welded on. Regardless of the material of which they are made, all flanges of the same DN and the same PN can be combined with one another. Shown on the following pages are flanged joints of the PN 10, PN 16, PN 25 and PN 40 pressure ratings.
PN 63 and PN 100 flanges are also possible. For further information on them see our leaflet entitled "Ductile iron pipe systems for Snow-making systems".

Fields of use/advantages

Flanged joints are restrained joints. Their primary field of use is above-ground pipeline laying, equipment in manholes, and building services. The standardised hole patterns also allow them to be used for transitions between different materials. When buried pipelines are laid, flanges are used above all for the installation of shut-off devices.

PFA - allowable operating pressure

- the stated PN defines the allowable operating pressure (PFA)
- PMA $=1.2 \times$ PFA (allowable maximum operating pressure for a short period, e.g. the period of a pressure surge)
- PEA = 1.2 X PFA +5 (allowable site test pressure).

5.1 Flanged joints

PN 10 flanged joints
to EN 1092-2
Bolts, nuts, washers and gaskets

DUKTUS should be obtained from other suppliers.

Washers to EN ISO 7091

Rubber gaskets with steel inlay to EN 1514-1

DN	Dimensions [mm]							Bolts		
	Flanges				Gasket					
	\varnothing D	b_{1}	\varnothing k	$\emptyset d_{1}$	d_{2}	d_{3}	b_{2}	Number	Thread	L
DN 40 to DN 150 are as for PN 16										
200	340	20	295	23	220	273	6	8	M 20	80
250	400	22	350	23	273	328	6	12	M 20	90
300	455	24.5	400	23	324	378	6	12	M 20	90
350	505	24.5	460	23	368	438	7	16	M 20	90
400	565	24.5	515	28	420	489	7	16	M 24	100
500	670	26.5	620	28	520	594	7	20	M 24	100
600	780	30	725	31	620	695	7	20	M 27	110
700	895	32.5	840	31	720	810	8	24	M 27	120
800	1,015	35	950	34	820	917	8	24	M 30	120
900	1,115	37.5	1,050	34	920	1,017	8	28	M 30	130
1000	1,230	40	1,160	37	1,025	1,124	8	28	M 33	140

PN 16 flanged joints
to EN 1092-2
Bolts, nuts, washers and gaskets should be obtained from other suppliers.

DN	Dimensions [mm]							Bolts		
	Flanges				Gasket					
	ØD	b_{1}	Øk	$\varnothing d_{i}$	d_{2}	d_{3}	b_{2}	Number	Thread	L
DN 40 to DN 80 are as for PN 25										
100	220	19	180	19	115	162	5	8	M 16	80
125	250	19	210	19	141	192	5	8	M 16	80
150	285	19	240	23	169	218	5	8	M 20	80
200	340	20	295	23	220	273	6	12	M 20	80
250	400	22	355	28	273	329	6	12	M 24	90
300	455	24.5	410	28	324	384	6	12	M 24	100
350	520	26.5	470	28	368	444	7	16	M 24	100
400	580	28	525	31	420	495	7	16	M 27	110
500	715	31.5	650	34	520	617	7	20	M 30	120
600	840	36	770	37	620	734	7	20	M 33	130
700	910	39.5	840	37	720	804	8	24	M 33	140
800	1,025	43	950	41	820	911	8	24	M 36	150
900	1,125	46.5	1,050	41	920	1,011	8	28	M 36	160
1000	1,255	50	1,170	44	1,025	1,128	8	28	M 39	170

PN 25 flanged joints
to EN 1092-2
Bolts, nuts, washers and gaskets should be obtained from other suppliers.

DN	Dimensions [mm]							Bolts		
	Flanges				Gasket			Number	Thread	L
	\varnothing D	b_{1}	Øk	$\varnothing d_{1}$	d_{2}	d_{3}	b_{2}			
DN 40 to DN 100 are as for PN 40										
125	270	19	220	28	141	194	4.5	8	M 24	90
150	300	20	250	28	169	224	5	8	M 24	90
200	360	22	310	28	220	284	6	12	M 24	90
250	425	24.5	370	31	273	340	6	12	M 27	110
300	485	27.5	430	31	324	400	6	16	M 27	110
350	555	30	490	34	368	457	7	16	M 30	110
400	620	32	550	37	420	514	7	16	M 33	120
500	730	36.5	660	37	520	624	7	20	M 33	130
600	845	42	770	40	620	731	7	20	M 36	150
700	960	46.5	875	43	720	833	8	24	M 39	160
800	1,085	51	990	49	820	942	8	24	M 45	180
900	1,185	55.5	1,090	49	920	1,042	8	28	M 45	180
1000	1,320	60	1,210	56	1,025	1,154	8	28	M 52	200

PN 40 flanged joints
to EN 1092-2
Bolts, nuts, washers and gaskets should be obtained from other suppliers.

DN	Dimensions [mm]							Bolts		
	Flanges				Gasket					
	\varnothing D	b_{1}	Øk	$\emptyset d_{1}$	d_{2}	d_{3}	b_{2}	Number	Thread	L
40	150	19	110	19	49	92	5.5	4	M 16	70
50	165	19	125	19	61	107	5.5	4	M 16	70
65	185	19	145	19	77	127	5.5	8	M 16	70
80	200	19	160	19	89	142	5.5	8	M 16	80
100	235	19	190	23	115	168	8	8	M 20	80
125	270	23.5	220	28	141	194	8	8	M 24	90
150	300	26	250	28	169	224	8	8	M 24	100
200	375	30	320	31	220	290	8	12	M 27	110
250	450	34.5	385	34	273	352	8	12	M 30	120
300	515	39.5	450	34	324	417	8	16	M 30	130
350	580	44	510	37	368	474	8	16	M 33	150
400	660	48	585	41	420	546	8	16	M 36	160
500	755	52	670	44	520	628	10	20	M 39	170
600	890	58	795	50	620	747	10	20	M 45	190

5.2 Ductile iron flanged pipes

PN 10, PN 16 and PN 25 double-flanged pipes
PN 10, PN 16 u. PN 25 to EN 545
with integral flanges
DUKTUS
(type 21) to EN 1092-2

Please note: separating FF pipes with integral flanges is not recommended.

External protection: epoxy to EN 14901
Internal protection: epoxy to EN 14901

DN	Dimensions			Weight [kg] ~			
	[mm]		[m] Laying length	1 m of pipe without flange	One flange		
	d_{1}	S_{1}			PN 10	PN 16	PN 25
80	98	7	0.1-2.0	16.1	2.8	2.8	2.8
100	118	7.2		20.4	3.3	3.3	3.8
125	144	7.5		26.4	4	4	4.7
150	170	7.8		32.4	5	5	6
200	222	8.4		46.1	6.9	6.7	8.7
250	274	9	0.1-3.0	61.3	9.8	9.4	13
300	326	9.6		78.1	13	12.6	17.7
350	378	10.2	0.2-3.0	96.5	14.7	17.5	25.4
400	429	10.8		116.2	17.2	22.1	33.2
500	532	12		160.6	23.2	37.4	47.2
600	635	13.2		211.3	32.8	57.6	68
700	738	14.4	0.3-2.0	268.5	44.3	57.4	-
800	842	15.6	0.4-2.0	332.1	58.5	76.8	-
900	945	16.8	0.4-3.0	401.7	69.6	91.4	-
1000	1,048	18		477.7	87.6	127	-

Ductile iron flanged pipes

PN 10, PN 16 and PN 25 double-flanged pipes
to EN 545
with screwed flanges

DUKTUS
(type 13) to EN 1092-2

Before cutting double flanged pipes verify the outer diameter.
(see page 132 - dimension d_{1})

External protection: zinc coating plus finishing layer Internal protection: cement mortar lining (CML)

DN	Dimensions				Weight [kg] ~				
	[mm]			[m] Laying length	1 m of pipe without flange		One flange		
	d_{1}	S_{1}	S_{2}		CML	Cast iron	PN 10	PN 16	PN 25
80	98	6	4	0.7-5.8	2	12.2	3.3	3.3	3.3
100	118	6			2.5	14.9	3.8	3.8	4.6
125	144	6.2			3.1	18.9	4.8	4.8	5.7
150	170	7.8			3.7	28	6	6	8.6
200	222	8.4			4.9	39.8	8.2	8	10.2
250	274	9			6.1	52.8	11.6	11.6	15.1
300	326	11.2			7.3	78.1	15.1	15.1	20.1
350	378	11.9	5	0.7-4.0	12.3	96.5	17.7	20.4	27.9
400	429	12.6			14	116.3	21	25.5	36.4
500	532	14			17.5	160.6	31	47	
600	635	15.4			20.9	211.3	42.7	66.2	

Ductile iron flanged pipes

PN 10, PN 16 and PN 25 double-flanged pipes
to EN 545
with puddle flange
to manufacturer's standard

Before cutting double flanged pipes verify the outer diameter.
(see page 132 - dimension d_{1})
External protection: zinc coating plus finishing layer, puddle flange bare metal Internal protection: cement mortar lining (CML)

DN	Dimensions [mm]			Weight [kg] ~		
	PN 10	ØD PN 16	PN 25	One puddle flange		
80	140			0.7		
100	160			0.8		
125	190			1		
150	230			1.5		
200	300			3		
250	320		370			5.7
300	380		430			8.2
350	440		500			13.1
400	500		530			10.4
500	620		650			
600	740		780			

Larger DN's and higher PN's available on enquiry; When ordering, please state: L, L1, whether to be in the form of a flanged spigot, \varnothing D if different from Table; puddle flanges can also be supplied in sections which can be welded-on on site. Minimum concrete class C20/25. Curing time of 3 days

5.3 Flanged fittings

FFK 11 fittings

$11 \frac{1}{4}{ }^{\circ}$ double flanged bends
to manufacturer's standard

DN	Dimensions [mm]	Weight [kg] ~ PN10 PN16 PN25 PN40			PN40
	L				
80	130	9.5			
100	140	11.9		12.9	
125	150	15.3		17.3	20.5
150	160	19		21.5	25.5
200	180	26	25	29.5	39
250	210	41.5	41	48	65.5
300	255	60	59.5	69.5	96.5
350	105	56	61.5	77	135.9
400	113	58	67.5	90	165.3
500	135	85	113	134	232.8
600	174	157	202	223	253.2
700	194	243	269	299	
800	213	330	366	333	

FFK 22 fittings
$22^{1} 2^{\circ}$ double flanged bends
to EN 545

DN	Dimensions [mm]	Weight [kg] ~			
	L	PN10	PN16	PN25	PN40
80	130	9.5			
100	140	11.9		12.9	
125	150	15.3		17.8	20.5
150	160	19.7		21.5	25.5
200	180	29	27.5	32.5	42
250	210	41.5	41	48	65.5
300	255	60	59	69.5	96.5
350	140	58	64	81	128
400	153	67	75.5	98	156.5
500	185	99	127	148	232
600	254	182	227	248	350
700	284	313	339	334	
800	314	428	646	445	-

FFK 30 fittings
30° double flanged bends
to EN 545

DN	Dimensions [mm]	Weight [kg] ~			
	L	PN10	PN16	PN25	PN40
80	130	9.5			
100	140	11.9		12.9	
125	150	15.3		17.8	20.5
150	160	19.5		19.5	25
200	180	29	27.5	32.5	42
250	210	41.5	40.5	48	65
300	255	59.5	59	69	96
350	165	65	71	88	138
400	183	73	82.5	106	163.5
500	220	109	137	158	256
600	309	212	257	278	284
700	346	360	386	430	
800	383	493	529	674	

FFK 45 fittings
45° double flanged bends
to EN 545

DN	Dimensions [mm]	Weight [kg] ~			
	L	PN10	PN16	PN25	PN40
80	130	9.4			
100	140/200*	11.3		12.3*	
125	150	14.5		15.7	18.3
150	160	18.4		20.5	24.5
200	180	27.5	27	31	41.5
250	350	54.5	54	61.5	82
300	400	77.2	76.2	87.7	118.2
350	298	75.5	82	99	141
400	324	94.4	106.4	128.4	196.4
500	375	143.5	173.5	196.5	264.5
600	426	210	263	292	397
700	478	292.5	322.5	392.5	
800	529	399.5	437.5	535.5	
900	581	513	561	682	-
1000	632	661	744	899	

Q fittings

90° double flanged bends
to EN 545

DN	Dimensions [mm]	Weight [kg] ~			
	L	PN10	PN16	PN25	PN40
80	165	9.7			
100	180	12.3		12.3	
125	200	18		21.1	22.3
150	220	19.8		21.8	26.3
200	260	31.2	30.2	34.7	45.2
250	350	50	49	57	77
300	400	69.9	68.9	80.4	110.9
350	450	93.1	102.2	146	190
400	500	133.2	146.2	205.5	272.5
500	600	179	209	233	300
600	700	269	322	350	455
700	800	381.5	411.5	481.5	
800	900	527	565.5	664.5	
900	1,000	690	737	858	-
1000	1,100	896	979	1,135	

F fittings

Flanged spigots
to EN 545

DN	Dimensions [mm]		Weight [kg] ~			
	L	d_{1}	PN10	PN16	PN25	PN40
80	350	98	7.5			
100	360	118	8.5		10.4	
125	370	144	12.4		13.1	14.3
150	380	170	15.6		16.6	17.5
200	400	222	24.6	24	24.5	29
250	420	274	32	31.5	36	45
300	440	326	43.2	42.7	47.7	63.2
350	460	378	52.3	55.3	64.3	85.3
400	480	429	64.3	70.3	81.3	115
500	520	532	93.9	109	121	154
600	560	635	133	159	173	226
700	600	738	179	194	228	-
800	600	842	226	245	294	-
900	600	945	272	295	356	-
1000	600	1,048	328	369	447	-

T fittings
All flanged tees
to EN 545
DUKTUS

DN ${ }_{1}$	DN	Dimensions [mm]		Weight [kg] ~			
		L	1	PN10	PN16	PN25	PN40
80	401)	330	155	14			
	50^{11}		160	15			
	80		165	15.7			
100	$40^{1)}$	360	170	18		19	
	$50^{1 /}$			17.1		18.1	
	80		175	18.4		19.6	
	100		180	19		20.5	
125	80	400	190	22.8		24.3	26.8
	100		195	23.8		25.8	28.3
	125		200	25.2		26.7	30.7
150	80	440	205	28.5		30.5	35
	100		210	29.4		31.9	35.9
	125		215	30.9		33.4	38.9
	150		220	32.2		35.3	41.9
200	80	520	235	42.2	41.7	45.7	56.7
	100		240	43.1	42.6	47.1	57.6
	$125{ }^{\text {+ }}$		245	51	51	55	58
	150		250	46	45.5	50.5	63
	200		260	49.5	48.5	55	70.5

[^13]

DN ${ }_{1}$	DN_{2}	Dimensions [mm]		Weight [kg] ~			
		L]	PN10	PN16	PN25	PN40
250	80^{1+}	700	265	72	71	79	99
	100		275	67.6	66.6	75.1	95.2
	125 ${ }^{\text {1) }}$			92	91	100	121
	150 ${ }^{\text {1) }}$		300	81	80	89	111
	200		325	75.2	74.2	84.2	109.7
	250		350	81	80	91.5	121.5
300	801)	800	290	98	97	108	142
	100		300	93.8	92.8	104.8	135.8
	$150{ }^{1 /}$		325	101	100	112	145
	200		350	102.4	101.4	114.4	151.4
	$250{ }^{11}$		375	113.9	112.9	128.9	175.9
	$300{ }^{11}$		400	117.4	113	128	168
350	100	850	325	115	121.5	138.5	181.5
	200			120.5	126.5	145.5	193.5
	350		425	138.8	147.8	172.8	236.8
400	801)	900	350	154.4	167.4	173	240
	100			158	173.2	174.4	241.4
	150 ${ }^{\text {1) }}$			144	156	179	249
	200			179.5	179.5	201.1	264.3
	$300{ }^{11}$		450	183	187.3	215	295
	400			182.5	209.5	238.5	340.5
500	80^{11}	1,000	400	215.5	216	263	330
	100			218.5	247	287	331
	150 ${ }^{\text {1) }}$			225.5	255.5	270	344
	200			242.3	273.6	274	344
	$300{ }^{11}$			259	267	287	373
	400		500	266.9	327.4	337.1	427.7
	500			291.7	298.2	337.3	449.7
600	801)	1,100	450	335	366	351	445
	100 ${ }^{1 /}$			350.7	385.5	352	446
	1501)			363.6	365	357	453
	200			296.4	394.9	387	479
	$300{ }^{11}$		550	368	416.6	416	506
	400			355	409	482.1	569
	$500{ }^{1)}$			370	435	468	598
	600			388	488	455	634

1) To manufacturer's standard

工

DN ${ }_{1}$	DN 2	Dimensions [mm]		Weight [kg] ~			
		L	1	PN10	PN16	PN25	PN40
700	100 ${ }^{1)}$	650	525	310	336	458	-
	$150{ }^{11}$			310	336	458	
	200	870	555	339.3	377.1	470	
	$300{ }^{11}$			383	416	503	
	400			468.4	444.5	543.5	
	500 ${ }^{11}$	1,200	600	539.8	532	644	
	$600{ }^{1 /}$			541.4	627.8	673	
	700			604	591	695	
800	801)	690	570	407.5	445.5	537.5	-
	$100{ }^{1 /}$			398.5	452	539	
	$150{ }^{1 /}$		580	438.2	409	543	
	200		585	448.7	455	550	
	$300{ }^{11}$	910	600	547.6	518	613	
	400		615	556.2	553	655	
	$500{ }^{11}$	1,350	645	697.6	698	801	
	600			654.4	729	832	
	$700{ }^{11}$		675	679	731	856	
	800			716	720	927	
900	$100{ }^{\text {1) }}$	730	640	445	488	730	-
	200		645	432	480	603	
	$300{ }^{11}$	950	660	544	588	690	
	400		675	532.5	585.5	717.5	
	$500{ }^{11}$	1,500	690	784	842	960	
	600		705	771	846	981	
	900		750	818	890	1,071	
1000	$150{ }^{1 /}$	770	705	561	640	790	-
	200			564	643	793	
	$300{ }^{11}$	990	735	645	724	879	
	400			657	738	899	
	$500{ }^{11}$	1,650	825	951	1,055	1,225	
	$600{ }^{11}$			966	1,082	1,243	
	700 ${ }^{1 /}$			989	1,102	1,292	
	800 ${ }^{11}$			1,016	1,123	1,339	
	$900{ }^{11}$			1,036	1,148	1,356	
	1000			1,066	1,186	1,413	

[^14]TT fittings

All flanged crosses

to manufacturer's standard

DN ${ }_{1}$	DN_{2}	Dimensions [mm]		Weight [kg] ~	
		L	H	PN10	PN16
80	80	330	165	23.1	
100	80	360	175	23.8	
	100		180	27.1	
125	100	400	195	35	
	125		200	35.2	
150	80	440	205	38.5	
	100		210	41	
	125		215	43.4	
	150		220	46.6	
200	80	520	235	45.8	45.8
	100		240	51.6	51.6
	150		250	59.6	59.6
	200		260	68.7	68.7
250	80	700	270	99	99
	100		275	101	101
	125			103	103
	150		300	107	107
	200		325	114.8	114.8
	250		350	119.5	119.5

Crosses for higher pressures available on enquiry

DN ${ }_{1}$	DN_{2}	Dimensions [mm]		Weight [kg] ~	
		L	H	PN10	PN16
300	80	800	295	128	128
	100		300	141	141
	150		325	145	145
	200		350	167	167
	250		375	170	170
	300		400	196	196
350	100	850	325	126.5	132.5
	300		425	174	180
	350			193	199
400	80	900	345	148	158
	100		350	152	162
	150			157	167
	200			161.5	172
	250			176	181.5
	300		450	196	209
	350			218	231
	400			252	257
500	80	1000	400	213	241
	150			336	364
	200			339	367
	250			343	371
	300		500	373	401
	400			378	411
	500			386	431
600	150	1100	450	309	361
	200			314	364
	250			319	369
	300		550	372	422
	350			376	428
	400			381	444
	500			415	478
	600			530	547
700	400	870	555	446	482
	700	1,200	600	658	610

Crosses for higher pressures available on enquiry

FFR fittings

Double flanged tapers to EN 545

DN ${ }_{1}$	dn	Dimensions [mm] L	Weight [kg] ~			
			PN10	PN16	PN25	PN40
80	401)	200	7.8			
	50^{11}		7.9			
	65		9.2			
100	401)	200	8.9		9.7	
	50^{11}		9.4		11	
	$65^{1)}$		10.6		12.6	
	80		11.1		13.1	
125	401)	200	12.5		13.5	13.5
	501)		12.6		14.5	14.5
	$65^{1)}$		13		15.5	15.5
	80^{11}		13		17.5	17.5
	100		13.1		18	18
150	401)	300	14.4		15.4	17.4
	$50^{1)}$		17.4		18.4	20.4
	$65^{1 /}$		17.9		18.4	21.4
	80^{11}	200	13.9		15.9	15.9
	$100{ }^{1 /}$		15.9		18.8	20.4
	125		16.4		18.4	22.4
200	50^{11}	300	20.6	20.6	25.1	32.1
	80^{11}		22.9	22.9	28.1	34.1
	$100{ }^{1 /}$		23.8	23.8	29.2	37.5
	1251)		25.5	25.5	30.9	38.5
	150		26.4	26.4	35.1	39.4

[^15]
\longrightarrow

DN ${ }_{1}$	dn	Dimensions [mm] L	Weight [kg] ~			
			PN10	PN16	PN25	PN40
250	$80^{1)}$	300	26	29	30.5	41
	$100{ }^{1 /}$		29	32.5	33	44
	125 ${ }^{11}$		31.5	32.5	33	46.5
	$150{ }^{1 /}$		32.5	33	36.6	55.5
	200		34.1	34.1	40	56.5
300	$100{ }^{1 /}$	300	29	29	35	48
	$150{ }^{1 /}$		33	32.5	38	55
	200 ${ }^{17}$		35.9	35.4	42.9	63.9
	250		40.8	39.8	49.3	74.8
350	$200{ }^{1)}$	600	87	90	103	127
	$250{ }^{17}$	300	44.4	46.9	59.4	90.4
	300		49.7	52.2	66.2	103.2
400	200 ${ }^{11}$	300	45.6	50.5	63.5	98
	$250{ }^{11}$		49.1	54.6	69.6	113.1
	300		54.4	59.4	76.4	125.9
	350		58.1	66.6	86.1	141.1
500	350 ${ }^{1)}$	600	145	149	166	201
	400		133.6	163.6	175.6	210.6
600	$400{ }^{1)}$	600	178	219	237.5	309.5
	500		185.5	226.5	257	343
700	400 ${ }^{11}$	600	253.5	281.5	334.5	
	$500{ }^{1)}$		258	273	337	-
	600		301.4	332.4	285.4	
800	$500{ }^{11}$	600	308.5	359.5	442.5	
	$600{ }^{11}$		363	375	459	-
	700		397.3	431.3	484.3	
900	600 ${ }^{1)}$	600	336	384	453	
	$700{ }^{11}$		456	497	481	-
	800		374.2	414.2	518.2	
1000	$800{ }^{17}$	600	516	612	739	-
	900		530.2	592.2	576.2	

1) To manufacturer's standard

FFRe fittings

Eccentric double flanged tapers

to manufacturer's standard

DN ${ }_{1}$	dn	Dimensions [mm] L	Weight [kg] ~			
			PN10	PN16	PN25	PN40
50	40	200	7			
65	40	200	8.5			
	50					
80	40	200	9.2			
	50		9.7			
	65		10.7			
100	40	200	11.1		11.6	
	50		12.1		12.1	
	65		12.6		12.6	
	80		13.1		13.1	
125	50	200	13.6		14.2	16.1
	65		14.6		15.1	16.4
	80		15.6		16.2	17.5
	100	300	16.5		17.1	18.4
150	50	300	17.9		21.5	23.5
	80		19		23	25
	100		20		24.5	26.5
	125		25.5		25.5	29
200	80	300	24.4	25	27	33.5
	100		24.5	24.5	28	34
	125		25.5	25.5	29	35
	150		29.5	29.5	31.5	38.5

		Dimensions [mm]	Weight [kg] ~			PN40
DN_{1}	dn	L				
250	100	300	35.5	35.5	39	49
	125		36	36	39.5	50.5
	150		40	40	42.5	51.5
	200		42	42	48	64
300	100	300	40.5	40.5	45	60
	150		42.5	46.1	59	82
	200		53.1	53.1	63	87.5
	250		55	55	66.5	94
350	200	500	82	85	99	122
	250		83	85.5	101	128
	300		108	114	125	162
400	150	500	81	90	102	138
	200	600	85	85	110.5	150.5
	250	500	91	102	123	163
	300		105	104	124	183
	350		117	126	145	200
500	250	500	114.5	127	140.5	186
	300		115	135	153	204
	350		120.5	141	158	207
	400		162	162	194	194
600	300	500	182	193	212	288
	400		196	241	252	345
	500		236	252	262	357

N fittings

Double flanged 90° duckfoot bends
to EN 545

4

DN	Dimensions [mm]			Weight [kg] ~			
	L	c	$\square d$	PN 10	PN 16	PN 25	PN 40
80	165	110	180	13.2			
100	180	125	200	16.9		17.9	
125	200	140	225	22.1		23.1	26.1
150	220	160	250	28.8		30.8	35.8
200	260	190	300	46.2	45.2	49.7	60.2
250	350	225	350	73.5	72.5	80.5	101
300	400	255	400	103.9	102.9	113.9	144.9
350	450	290	450	136	142	158	201
400	500	320	500	176.4	186.4	209.4	277.4
500	600	385	600	281	311	335	402
600	700	450	700	425	478	506	612

X fittings
Blank flanges
to EN 545

DUKTUS

Up to and including DN 250

Above DN 250
b [mm]
PN 10| PN 16| PN $25 \mid$ PN $40 \mid$ PN $10 \mid$ PN 16 \mid PN $25 \mid$ PN 40

Optional bored hole(s) [inch]
$1 \times 1 / 2^{\prime \prime}$ central
1×2 " central

DN	b [mm]				Weight [kg] ~				Optional bored hole(s) [inch]
	PN 10	PN 16	PN 25	PN 40	PN 10	PN 16	PN 25	PN 40	
40	16				2.5				$1 \times 1 / 2^{\prime \prime}$ central
50	16				3				
65	16					4			
80	16				3.6				1×2 " central
100	16				4.3		4.8		
125	16			20.5	5.6		6.2	7.9	
150	16		17	23	7.2		8.3	11.1	
200	17		19	27	11	10.8	13.3	20	
250	19		21.5	31	16.9	16.6	21	33.5	
300	20.5		23.5	35.5	26	25.5	32	51.5	2×2 eccentric
350	20.5	22.5	26	40 ${ }^{11}$	33	37	46	73.5	
400	20.5	24	28	44 ${ }^{11}$	41	49	62.5	106	
500	22.5	27.5	32.5	48 ${ }^{11}$	65	85.5	102	151	
600	25	31	37	53^{11}	99.5	136	159	230	
700	27.5	34.5	41.51)	-	147	179	225	-	
800	30	38	$46^{1)}$	-	207	252	325	-	
900	32.5	41.5	50.51)	-	273	335	429	-	
1000	35	45	551)	-	360	453	578	-	

1) To manufacturer's standard, flange connection dimensions to EN 1092-2;
flanges for higher pressures available on enquiry

DN 80 transition flanges
Flanges for PN 10 to PN 40 transitions
to manufacturer's standard

DN	D	Dimensions [mm]	PN [bar]	Weight [kg] ~
80	200	27	$10 / 40$	3.9

All fittings produced by member companies of the "Fachgemeinschaft Gussrohrsysteme/ European Association for Ductile Iron Pipe Systems (FGR/EADIPS) carry the "FGR" mark indicating that all the guidelines required for the award of the "FGR Quality Mark" have been complied with.
As well as this, all fittings are marked with their nominal sizes and bends are marked with their respective angles.
Flanged fittings have the nominal pressures PN 16, 25 or 40 cast or stamped onto them. No nominal pressure appears on flanged fittings for PN 10 or on any socket fittings. To identify their material as "ductile cast iron", fittings are marked with three raised dots arranged in a triangle (\bullet) on their outer surface.
In special cases, there may be further markings which are specified as needing to be applied.

5.4 Installation instructions for flanged joints

Applicability

These installation instructions apply to ductile iron pipes and fittings to EN 545 with flanges to EN 1092-2.

Construction of the joint

Washers to EN ISO 7091
Bolt dimensions as per
FGR/EADIPS standard 30

Rubbers gaskets
 with a steel inlay to EN 1514-1

Clean the bolt holes and the surfaces of the sealing ridge and the gasket which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples) from them.

DUKTUS

Assembling the joint

For recommendations for transport, storage and installation, see p. 289 ff .
For better assembly and greater reliability in operation, only gaskets with a steel inlay should be fitted.
Flanged pipes and fittings must be carefully supported.
Rigid joints in pipes are unable to withstand differing loads and differing amounts of settlement. Under no circumstances must the pipes or fittings be supported on stones or other similar material.

Positioning the bolt holes

The rule for the positioning of bolt holes which applies to flanged pipes and flanged fittings is that no bolt holes must be situated on the vertical or horizontal centre-lines of the flanges.

Note in the installation of flanged fittings

To make it easier for flanged fittings to be installed properly, their flanges have two oppositely situated notches made in them. These notches must be in line with one another horizontally or vertically at the time of installation.

Right

Wrong

DUKTUS

Installing double flanged tapers

The example shown is an FFR 300/200 PN 10 taper
Because of the differing numbers of bolt holes in the two flanges of double flanged tapers, the next valve or fitting will be skewed around its axis if the taper is not correctly installed. The amounts of skew may, depending on the nominal size, be up to 22.5°.

Important!

With large nominal sizes such skews are almost imperceptible.

Tightening torques

The tightening torque M_{D} depends on the nominal size $D N$ and the pressure rating $P N$.
It can be calculated as follows:
$\mathrm{M}_{\mathrm{D}} \mathrm{PN} 10=\mathrm{DN} / 3[\mathrm{Nm}]$
$\mathrm{M}_{\mathrm{D}} \mathrm{PN} 16=\mathrm{DN} / 1.5[\mathrm{Nm}]$
$\mathrm{M}_{\mathrm{D}} \mathrm{PN} 25=\mathrm{DN} / 1[\mathrm{Nm}]$
$\mathrm{M}_{\mathrm{D}} \mathrm{PN} 40=\mathrm{DN} / 0.5[\mathrm{Nm}]$

5.5 Calculating vertical offsets

 when using flanged fittings
Formulas

$L_{H}=H / \tan \alpha$
$L_{s}=H / \sin \alpha$
$L_{\text {FF }}=L_{S}-2 \cdot L$
$L_{\text {Ges }}=L_{H}+2 \cdot L$
$H=\quad$ Vertical offset from pipe axis to pipe axis
$L=\quad$ Centre-to-end length of the double flanged bend
$\alpha=\quad$ Angle of the double flanged bend

Table 1: Centre-to-end lengths " L " of double flanged bends (FFK) as a function of the angle α and diameter DN

Angle $\mathbf{\alpha}$ of FFK	Centre-to-end length $\mathrm{L}[\mathrm{cm}]$ of double flanged bend									
	80	DN								
11°	13.0	14.0	125	150	200	250	300	350	400	
22°	13.0	14.0	15.0	16.0	18.0	21.0	25.0	10.5	11.3	
30°	13.0	14.0	15.0	16.0	18.0	21.0	25.0	14.0	15.3	
45°	13.0	14.0	15.0	16.0	18.0	21.0	25.0	16.5	18.3	
90°	16.5	18.0	20.0	22.0	26.0	35.0	40.0	29.8	32.4	

Angle α of FFK	Centre-to-end length $L[\mathrm{~cm}]$ of double flanged bend					
	DN	DN	DN	DN	DN	DN
11°	1300	600	700	800	900	1000
22°	18.5	17.4	19.4	21.3	-	-
30°	22.0	30.4	28.4	31.4	-	-
45°	37.5	42.6	34.6	38.3	-	-
90°	60.0	70.0	80.8	52.9	58.1	63.2

Dimensions may differ from those shown. The centre-to-end lengths " L " can also be found in Chapter 6.

Table 2 for determining the length " L_{s} " as a function of the angle α and vertical offset "H"

Length of the slope " L_{s} " $[\mathrm{cm}]$											
Angle a of FFK	$\sin \alpha$	Vertical offset H [cm] (pipe axis to pipe axis)									
		5	10	15	20	25	30	35	40	45	50
11°	0.19081	26.2	52.4	78.6	104.8	131.0	157.2	183.4	209.6	235.8	262.0
22°	0.37461	13.3	26.7	40.0	53.4	66.7	80.1	93.4	106.8	120.1	133.5
30°	0.5	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0
45°	0.70711	7.1	14.1	21.2	28.3	35.4	42.4	49.5	56.6	63.6	70.7
90°	1	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0

Length of the slope " $\mathrm{L}_{\text {s }}$ " [cm]											
Angle a of FFK	$\sin \alpha$	Vertical offset H [cm] (pipe axis to pipe axis)									
		55	60	65	70	75	80	85	90	95	100
11°	0.19081	288.2	314.4	340.7	366.9	393.1	419.3	445.5	471.7	497.9	524.1
22°	0.37461	146.8	160.2	173.5	186.9	200.2	213.6	226.9	240.2	253.6	266.9
30°	0.5	110.0	120.0	130.0	140.0	150.0	160.0	170.0	180.0	190.0	200.0
45°	0.70711	77.8	84.9	91.9	99.0	106.1	113.1	120.2	127.3	134.3	141.4
90°	1	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0

Table 3 for determining the length " L_{μ} " as a function of the angle and vertical offset "H"

Horizontal length " L_{H} " $[\mathrm{cm}]$ of the offset, from centre to centre of bends											
Angle α of FFK	$\tan \alpha$	Vertical offset H [cm] (pipe axis to pipe axis)									
		5	10	15	20	25	30	35	40	45	50
11°	0.19438	25.7	51.4	77.2	102.9	128.6	154.3	180.1	205.8	231.5	257.2
22°	0.40403	12.4	24.8	37.1	49.5	61.9	74.3	86.6	99.0	111.4	123.8
30°	0.57735	8.7	17.3	26.0	34.6	43.3	52.0	60.6	69.3	77.9	86.6
45°	1	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0
90°	∞	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Horizontal length " L_{H} " $[\mathrm{cm}]$ of the offset, from centre to centre of bends

Angle		Vertical offset H [cm] (pipe axis to pipe axis)									
FFK	$\tan \alpha$	55	60	65	70	75	80	85	90	95	100
11°	0.19438	283.0	308.7	334.4	360.1	385.8	411.6	437.3	463.0	488.7	514.5
22°	0.40403	136.1	148.5	160.9	173.3	185.6	198.0	210.4	222.8	235.1	247.5
30°	0.57735	95.3	103.9	112.6	121.2	129.9	138.6	147.2	155.9	164.5	173.2
45°	1	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0
90°	∞	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

How long does the double flanged pipe have to be when existing double flanged bends are being used and the vertical offset is known?

1. Find the value " L_{s} " from Table 2 for the known vertical offset and the angle α of the bend.
2. Find the centre-to-end length "L" of the bend from Table 1 or our Drinking Water Catalogue.
3. To find the length " $L_{F F}$ " of the double flanged pipe, deduct twice " L " from " L_{s} ".

How large is the vertical offset " H " when an existing double flanged pipe and existing double flanged bends are being used?

1. Measure the length " $L_{\text {FF }}$ " of the double flanged pipe.
2. Find the centre-to-end length "L" of the bend from Table 1 or our Drinking Water Catalogue.
3. Calculate " L_{S} ": $L_{S}=L_{F F}+2 \bullet L$
4. Find the $\sin \alpha$ of the bends which are being used from Table 2.
5. Calculate the vertical offset "H" given by the above as follows: $H=L_{s} \bullet \sin \alpha$

How long is the distance " $\mathrm{L}_{\text {GEs }}$ " when the vertical offset " H " and the angle of the double flanged bends are known?

1. From the known vertical offset and the angle α of the double flanged bend, find the value " L_{H} " from Table 3.
2. Find the centre-to-end length "L" of the bend from Table 1 or our Drinking Water Catalogue.
3. Calculate " $L_{\text {GES }}$ " as follows: $L_{\text {GES }}=L_{H}+2 \bullet L$

Worked example:
FFK 30°, DN 200, H $=70 \mathrm{~cm}$

140 cm
18.0 cm
$L_{F F}=140 \mathrm{~cm}-2 \cdot 18 \mathrm{~cm}=104 \mathrm{~cm}$

Worked example:
FFK 30°, DN 200, $L_{F F}=104 \mathrm{~cm}$

104 cm
18.0 cm
$L_{S}=104 \mathrm{~cm}+2 \cdot 18 \mathrm{~cm}=140 \mathrm{~cm}$
0.5 cm
$H=140 \mathrm{~cm} \cdot 0.5=70 \mathrm{~cm}$

Worked example:
FFK 30°, DN 200, $\mathrm{H}=70 \mathrm{~cm}$
121.2 cm
18.0 cm
$L_{\text {GES }}=121.2 \mathrm{~cm}+2 \cdot 18 \mathrm{~cm}=$
157.2 cm

6 COATINGS

(Structure, operation, fields of use, installation instructions)

Preliminary remarks

In their as-supplied form, ductile iron pipes and fittings have factory-applied internal and external coatings. The various coatings available for pipes can be selected to suit a wide variety of factors and can be combined almost as desired.
Some of the crucial influencing factors are as follows:

- the medium to be carried
- the corrosiveness of the soil and groundwater
- the grain size of the bedding
- the temperature of the medium
- the ambient temperature
- the installation technique

The structure, operation and fields of use of the various internal and external coatings available for pipes are described in the following Chapter.
For fittings, what has shown itself to be the state of the art internal and external coating is the epoxy coating to EN 14901 . Fittings with this coating can be used both for the supply of drinking water and for the disposal of sewage and other wastewater. Other coatings such as a cement mortar lining, enamelling or bitumen are possible on enquiry.

6.1. External coatings Cement mortar coating (Duktus ZMU)

DUKTUS

Structure

The cement mortar coating (ZMU) is available for 6 m laying length pipes of nominal sizes from DN 80 to DN 1000 and for all push-in joints.
It complies with EN 15 542. The nominal layer thickness is therefore 5 mm . Below the ZMU there is always a zinc coating of a mass of at least $200 \mathrm{~g} / \mathrm{m}^{2}$. An additional primer may be applied between the zinc and the ZMU but this can be dispensed with if the ZMU is of the polymer-modified type. The cement mortar is applied by an extrusion process (winding-on) or a spraying process.

The sockets are protected by rubber protective sleeves or shrink-on material (see Chapter 7, p. 276 ff.).

For special conditions of use, such for example as for trenchless installation in non-cohesive soils, we can also supply our ZMU Plus coating. In this case the pipe is sheathed with cement mortar to a depth sufficient to give it an entirely cylindrical external outline.

DUKTUS

Operation

The ZMU is highly effective in providing corrosion protection and protects against both chemical and mechanical attack.
The protective action against chemicals is based above all on the porosity and alkalinity of the mortar used, which is based on blast furnace cement. When the mortar is acted on by groundwater or the soil moisture, what is produced, in time, at the surface of the ductile iron pipe is a $\mathrm{pH}>10$, which is a reliable means of stopping corrosion from occurring. In the unlikely event of the ZMU being damaged mechanically, the corrosion protection is maintained by the zinc coating situated below the ZMU.

In addition to this, the allowable mechanical loads are laid down by stipulations relating to them in EN 15 542. Standardised figures are given for, amongst other things, strength of adhesion and impact resistance. The consequence is that the ZMU has an outstanding ability to carry mechanical loads.

Fields of use

Because of the excellent mechanical and chemical protective properties of the ZMU, pipes with an external coating of this kind can be used almost anywhere. Some of the significant fields of use are:

- corrosive/contaminated soils

Under Annex D of EN 545, ductile iron pipes with a fibre-reinforced cement mortar coating to EN 15542 can be installed in soils of any desired corrosiveness.

- coarse grained pipe bedding material

DVGW Arbeitsblatt W 400-2 regulates the allowable grain sizes of the pipe bedding material. Under Anhang G to this Arbeitsblatt, a maximum grain size of 100 mm , where the grains are of a rounded or fragmented form, is allowable for pipes with a cement mortar coating.

- trenchless installation techniques

The trenchless installation techniques for which ductile iron pipes are relevant are regulated in DVGW Arbeitsblätter GW 320-1 to GW 324. Under these documents, pipes with a cement mortar coating are approved for all such techniques.

- stray currents

The latest investigations indicate that ductile iron pipes with a cement mortar coating should be used in areas subject to stray currents. In this way, by installing joints which are not electrically conductive, stray currents can be stopped from having an adverse effect on the pipeline.

DUKTUS

6.1.2. Installation instructions for pipes with a ZMU Applicability

These installation instructions apply to ductile iron pipes to EN 545 with a cement mortar coating (ZMU) to EN 15 542. The installation instructions applicable to the given type of joint should be followed when assembling joints between pipes.

Installation must be carried out in such a way that the cement mortar coating is not damaged. The following options are available for protecting the socket joints:

- rubber sleeves for protecting cement mortar
- heat-shrink material or protective tapes (to DIN 30 672)
- mortar bandages (e. g. made by the Ergelit company) for special applications.

Rubber sleeves for protecting cement mortar

Rubber sleeves for protecting cement mortar can be used for TYTON®, BRS ${ }^{\oplus}$ and BLS® joints in pipes up to DN 800 in size. Before the joint is assembled, turn the sleeve inside out and, with the larger diameter end leading, pull it onto the spigot end sufficiently far for the cement mortar coating to project from the sleeve by about 100 cm . Fitting can be made easier by applying lubricant to the cement mortar coating

Once the joint has been assembled and the seating of the gasket checked with the depth gauge, turn the sleeve back outside in, pull it along until it is resting against the end-face of the socket and hook it over the socket. It will then rest firmly and tightly against the pipes.

DUKTUS

Shrink-on material and protective tapes

Shrink-on material and protective tapes can be used on all joints. The shrink-on material must be suitable for the dimensions of the particular joint and for the intended use; see Chapter 7, p. 276 ff.

Fitting a shrink-on sleeve

Pull the shrink-on sleeve onto the socket end before the joint is assembled. The surface to be covered should be prepared as detailed in Merkblatt GW 15, i.e. the area to which the sleeve is to be fitted should be freed of any rust, grease, dirt and loose particles.
Preheat the surface to about $60^{\circ} \mathrm{C}$, and thus dry it, with a propane gas flame. After the joint has been assembled, pull the shrink-on sleeve over the joint, leaving approximately half its length on the socket.

The protective lining present in the sleeve should not be removed until after the sleeve has been positioned on the socket and shortly before it is going to be heated.
With a propane gas flame set to a soft setting, heat the shrink-on sleeve evenly all round at the point where the end-face of the socket is situated until the sleeve begins to shrink and the outline of the socket appears within it. Then, while keeping the temperature even by fanning the burner up and down in the circumferential direction, shrink on first the part of the sleeve on the socket and then, starting from the end face of the socket, the part on the barrel of the pipe.

DUKTUS

The process has been satisfactorily carried out when:

- the whole of the sleeve has been shrunk onto the joint between the pipes
- it is resting smoothly against the surface with no cold spots or air bubbles and the sealing adhesive has been forced out at both ends
- the requisite overlap of 50 cm over the factory-applied coating has been achieved.

Covering a socket joint with a shrink-on sleeve of tape material

The shrink-on tape is available in pre-cut form with a sealing strip already incorporated or in 30 m rolls which include a sealing strip for each socket.
When in 30 m rolls, the shrink-on tape has to be cut to the appropriate length on site (see p. 278).

The surface to be covered should be prepared as detailed in Merkblatt GW 15, i.e. the area to which the tape is to be fitted should be freed of any rust, grease, dirt and loose particles. Preheat the surface to about $60^{\circ} \mathrm{C}$, and thus dry it, with a propane gas flame. Detach the backing film from the tape for about 150 mm . Position the end of the tape centrally over the joint between the pipes, at right angles to the plane of the joint, and wrap the tape loosely round the joint, removing the rest of the backing film as you do so. The overlap between the ends of the tape should be at least 80 cm and should be situated at an easily accessible point in the top third of the pipes.
At low ambient temperatures, it is useful for the adhesive side of the point of overlap and of the sealing strip to be heated for a short period.

Position the sealing strip centrally across the overlap and with a constantly moving soft yellow flame heat the strip evenly from the outside until the lattice pattern of the fabric becomes apparent. Then, wearing gloves, press the sealing strip hard against the tape. Moving the flame evenly in the circumferential direction of the pipes, shrink the tape first onto the socket, beginning on the side away from the sealing strip, and then, in the same way, onto the spigot end.
The process has been satisfactorily carried out when:

- the whole of the tape has been shrunk onto the joint between the pipes
- it is resting smoothly against the surface with no cold spots or air bubbles and the sealing adhesive has been forced out at both ends
- the requisite overlap of 50 cm over the factory-applied coating has been achieved.

With the types of socket protection described, the whole of the angular deflections specified in the installation instructions can still be used even after the protection has been applied.

DUKTUS

Rather than the molecularly cross-linked Thermofit heat-shrinkable material, what may also be used are protective tapes of other kinds provided they meet the requirements of DIN 30672 and carry a DIN/DVGW registered number.

Wrapping with protective tapes

Once the joint has been fully assembled, the protective tape is wrapped around the joint in several layers in such a way that it covers the cement mortar coating for $\geq 50 \mathrm{~mm}$.

Wrapping with a mortar bandage (made by the Ergelit company)

Soak the mortar bandage in a bucket filled with water until no more air bubbles are released; maximum soak time should be two minutes.

Take the wet bandage out of the bucket and gently press the water out of it.
Wrap the bandage round the area to be covered (cover the cement mortar coating for $\geq 50 \mathrm{~mm}$) and shape it to the contours of the joint.

For a layer 6 mm thick, wrap the bandage round twice or in other words make 50\% of the bandage an overlap.
The protective bandage will be able to take mechanical loads after about 1 to 3 hours.

Filling of the pipeline trench

The bedding for the pipeline should be laid in accordance with EN 805 or DVGW Arbeitsblatt W 400-2.
Virtually any excavated material can be used as a filling material, even soil containing stones up to a maximum grain size of 100 mm (see DVGW Arbeitsblatt W 400-2). Only in special cases does the pipeline need to be surrounded with sand or with some other foreign material.
In the region of surfaces carrying traffic, the filling of pipeline trenches should follow the Merkblatt für das Verfüllen von Leitungsgräben (issued by the Forschungsgesellschaft für das Straßen- und Verkehrswesen of Cologne).

Push-in joints protected by rubber sleeves for protecting cement mortar or by shrink-on material should be surrounded by fine-grained material or should be protected by pipe protection mats.

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 364).
Before pipes are cut, the cement mortar coating must be removed for a length of 2L or 2LS, as the case may be, as shown in the Table below (for collars, allowance must also be made for the dimension for sliding on the collar).

DN	TYTON®/BRS (BLS $L_{s}(\mathrm{~mm})$
80	95	165
100	100	175
125	100	185
150	105	190
200	110	200
250	115	205
300	120	210
350	120	-
400	120	230
500	130	245
600	145	300
700	205	315
800	220	330
900	230	345
1000	245	360

The lengths of spigot ends free of cement mortar coating appropriate to TYTON ${ }^{\circledR}$ gaskets apply as follows to sockets to DIN 28603
Form A
up to DN 600
Form B (long socket) DN 700 and above

Procedure for removing the cement mortar coating

- At the dimensions given in the above table, mark lines indicating the cuts to be made in the cement mortar coating
- Following the lines, make cuts into the cement mortar coating to about half the depth of the layer (to a depth of 2-3 mm). Important: Do not cut into the cast iron wall of the pipe! Protective workwear, especially safety goggles, must be used all the time. We recommend a special cutting disc (p. 275).
- Make two or three longitudinal cuts (as described above) into the cement mortar coating, distributing the cuts around the circumference.
- In the case of pipes which have had a primer applied between the zinc coating and the cement mortar coating, the cement mortar coating should be heated to approx. 160$200^{\circ} \mathrm{C}$ before it is detached. Such pipes are identified by a line below the marking for the coating standard, i.e. "DIN EN 15 542".
- Detach the cement mortar coating by gentle blows with a hammer - starting at the longitudinal cuts.
- Split all the cuts apart with a cold chisel.
- Remove the cement mortar coating and free the spigot end of any residual cement mortar with a scraper and wire brush.
- The pipe can now be cut and the spigot end bevelled as indicated in the section entitled "Cutting of pipes" (see p. 364)

It is essential for the new zinc-coated spigot ends which are produced to be repainted with a suitable finishing coating!

Fitting pipe saddles

To make house connections to ductile iron pipes with a cement mortar coating, what should preferably be used are saddles with an internal sealing sleeve. Within the hole in the pipeline, this type of pipe saddle seals directly against the surface of the ductile iron pipe in the drilled hole made in the pipe.

Fittings of this kind are available from many manufacturers, e. g. Erhard, EWE and Hawle. For further information see DVGW-Merkblatt W 333.

On-site repairs to the cement mortar coating (ZMU)

All repairs to any detached parts of the ZMU must be carried out using the repair kit supplied by the pipe manufacturer.

Contents of the repair kit

approx. 4 kg of sand/cement mixture
plus approx. 5 m of 200 mm wide gauze
1 litre of diluted additive.
These components are specially adjusted for use with Duktus pipes. They must not be replaced by any other material or used to produce classes of cement mortar different from those specified on the repair kit!

Repair instructions

A proper repair can only be made at temperatures of above $5^{\circ} \mathrm{C}$.
Apart from the repair kit, what you will also need are:
Rubber gloves
Dust-tight protective goggles
Wire brush
Spatula
Additional mixing vessel
Possibly water for mixing

If there is severe damage:

Hammer
Cold chisel

Preparing the damaged area

If there is only slight surface damage, simply remove any loose pieces of cement mortar and any pieces which are not firmly attached with the wire brush. Finally, moisten the damaged area.
If the damage is severe, it is advisable for the cement mortar to be completely removed (down to the bare metal) in the damaged area with a hammer and cold chisel.
The protective goggles must be worn when doing the above!
Remove the cement mortar in such a way that square edges are obtained:

DUKTUS

Right

Damaged area

Cement mortar	Cement mortar
$7 / / 1 / /$ Pipe	

Wrong

Damaged area

Do not use excessive force when removing the cement mortar as this may cause the sound cement mortar to become detached in the region next to the damaged area.

Remove any loose material which is still present with the wire brush and moisten the damaged area.

Mixing

First of all stir the diluted additive well. Then mix the mortar, adding as little additive and water as possible, until a mixture which can be applied easily with the spatula is obtained - the amount of water contained in the additive is normally all that is needed. To begin with, use only the additive solution and meter it in carefully. Then add extra water if necessary (e.g. at high temperatures in summer).

Application

Once the mortar is easily workable, fill the damaged area with it and level off the surface. Finally, smooth the repaired area, and especially the parts at the edges, with a moistened, wide paintbrush or a moistened dusting brush.
If the damage covers a large area, the gauze is needed to fix the mortar in place in the damaged region. For this purpose the gauze should be positioned about $1-2 \mathrm{~mm}$ below the surface of the mortar. The gauze must not come into contact with the metal surface of the pipe because, if it does so, it will then act as a wick.
Having completed the repair, seal the repair kit again so that it is airtight.

Drying and entry into service

Repairs covering a particularly large area should be covered with plastic film to allow them to dry slowly, thus minimising the risks of cracks forming.
There should be a wait of at least 12 hours before repaired pipes are installed or the damaged area should be provided with adequate protection against mechanical loads.

6.1. External coatings Zinc coating with finishing layer

DUKTUS

Structure

A zinc coating with a finishing layer is available for 6 m laying length pipes of nominal sizes from DN 80 to DN 1000 and for all push-in joints. The finishing layer may consist of epoxy paint or bitumen. It complies with EN 545 and is available in the following colours:

- blue for drinking water
- green for non-drinking water
- black (bitumen) for snow-making systems and turbine pipelines

Other colours are available on enquiry.
The mean thickness of the finishing layer is $70 \mu \mathrm{~m}$. Below the finishing layer there is a zinc coating with a mass of at least $200 \mathrm{~g} / \mathrm{m}^{2}$.

Operation

There are three factors on which the protective action of the zinc coating with a finishing layer is based:

- the electrochemical action of the zinc
- a reduction in any subsequent diffusion of the attacking medium, caused by the products of reaction of the zinc which form and which are insoluble in water
- the anti-bacterial action of zinc salts

If there is damage to the corrosion protection which extends down to the surface of the cast iron, an electrochemical cell, a so-called macrocell, forms at the damaged point. When metals are arranged in the electrochemical series, zinc is a less noble metal than iron; it has a more negative electrode potential and if it is in conductive contact with iron and an electrolyte is present it goes into solution. In electrochemical terms, the exposed surface of the cast iron thus forms a cathode and the zinc-coated surface of the pipe an anode. Zinc ions migrate to the damaged point and form a layer of "scarring" which stops the corrosion.

DUKTUS

Cathodic protective action of the zinc at injuries to the protective layer
When pipes are laid in the ground, over the course of time the layer of zinc changes into a dense, firmly adhering, impermeable and uniformly crystalline layer of insoluble compounds consisting of zinc oxides, hydrates and zinc salts of different compositions. Although the exchange processes between the zinc and the ground are hampered by the porous finishing layer, they are not completely suppressed and in a spatially confined region conditions are created for a slow conversion which encourages salts to crystallise out.
Even though the metallic zinc which was originally present has been converted, this layer of products of the corrosion of the zinc maintains the protective action.
In anaerobic soils in which bacterial corrosion by sulphate-reducing bacteria may occur, zinc provides protection as a result of its antibacterial action and its ability to increase the pH at the interface between the cast iron and the soil.

DUKTUS

Fields of use

Pipes with a zinc coating are used above all in applications where an exchange of soil is intended. There are two main factors which may dictate such an exchange:

- Under DVGW W 400-2, Anhang G, the allowable grain size of the pipe bedding material is limited to 0 to 32 mm (rounded grains) or 0 to 16 mm (fragmented grains)
- Many soils are permitted as pipe bedding materials under EN 545 but the following are exceptions
- soils with a low resistivity of less than 1,500 ohms $\times \mathrm{cm}$ when installation is above the water table or one of less than 2,500 ohms $\times \mathrm{cm}$ when installation is below the water table
- mixed soils, i.e. soils made up of two or more different types of soil
- soils with a pH of less than 6 and a high base-neutralising capacity
- soils which contain refuse, cinders or slag or which are polluted by wastes or industrial effluents.

A thicker finishing layer with a local minimum thickness of $100 \mu \mathrm{~m}$ is able to widen the field of use to cover a soil resistivity of 1,000 ohms $\times \mathrm{cm}$ when installation is above the water table and one of 1,500 ohms $\times \mathrm{cm}$ when it is below the water table.

Further information on the present subject can be found in Chapter 9.

Installation instructions

The directions given in Chapter 9 relating to bedding materials and the cutting of pipes should be followed.

6.1. External coatings Zinc-aluminium coating with finishing layer (Duktus Zinc Plus)

Structure

A zinc-aluminium coating with a finishing layer is available for 6 m laying length pipes of nominal sizes from DN 80 to DN 1000 and for all push-in joints. The finishing layer consists of blue epoxy paint and complies with EN 545. Other colours are available on enquiry.
The minimal thickness of the finishing layer is $70 \mu \mathrm{~m}$. Below the finishing layer there is a zinc-aluminium coating (85% zinc and 15% aluminium) with a mass of at least $400 \mathrm{~g} / \mathrm{m}^{2}$.

Operation

There are three factors on which the protective action of the zinc-aluminium coating with a finishing layer is based:

- the electrochemical action of the zinc
- a reduction in any subsequent diffusion of the attacking medium, caused by the products of reaction of the zinc which form and which are insoluble in water
- the anti-bacterial action of zinc salts

If there is damage to the corrosion protection which extends down to the surface of the cast iron, an electrochemical cell, a so-called macrocell, forms at the damaged point. When metals are arranged in the electrochemical series, zinc is a less noble metal than iron; it has a more negative electrode potential and if it is in conductive contact with iron and an electrolyte is present it goes into solution. In electrochemical terms, the exposed surface of the cast iron thus forms a cathode and the zinc-coated surface of the pipe an anode. Zinc ions migrate to the damaged point and form a layer of "scarring" which stops the corrosion.

Cathodic protective action of the zinc at injuries to the protective layer
When pipes are laid in the ground, over the course of time the layer of zinc changes into a dense, firmly adhering, impermeable and uniformly crystalline layer of insoluble compounds consisting of zinc oxides, hydrates and zinc salts of different compositions. Although the exchange processes between the zinc and the ground are hampered by the porous finishing layer, they are not completely suppressed and in a spatially confined region conditions are created for a slow conversion which encourages salts to crystallise out.
Even though the metallic zinc which was originally present has been converted, the layer of products of the corrosion of the zinc maintains the protective action.

To delay the effect of this conversion for as long as possible, and thus to maintain the protective electrochemical action, the zinc has a 15\% proportion of aluminium added to it. This and the increase in the total mass of zinc produces a further rise in the technical operating life which can be expected and an extension of the fields of use.

DUKTUS

In anaerobic soils in which bacterial corrosion by sulphate-reducing bacteria may occur, zinc provides additional protection as a result of its antibacterial action and its ability to increase the pH at the interface between the cast iron and the soil.

Fields of use

Pipes with a zinc-aluminium coating (Duktus Zinc Plus) are used above all in applications where an exchange of soil is intended. Such an exchange is dictated mainly by the allowable grain sizes. Under DVGW W 400-2, Anhang G, the allowable grain size of the pipe bedding material is limited to 0 to 32 mm (rounded grains) or 0 to 16 mm (fragmented grains).

Few limits are set in respect of the corrosiveness of the pipe bedding material and the only soils which are ruled out under EN 545 are the following:

- acidic peaty soils
- soils which contain refuse, cinders or slag or which are polluted by wastes or industrial effluents
- soils below sea level whose resistivity is less than 500 ohms $\times \mathrm{cm}$.

In soils of these kinds, and also where stray currents occur, it is advisable for pipes with a cement mortar coating to be used (see 6.1 Cement mortar coating (Duktus ZMU)).

Further information on the present subject can be found in Chapter 9.

Installation instructions

The directions given in Chapter 9 relating to bedding materials and the cutting of pipes should be followed.

6.1. External coatings Thermally insulated ductile iron pipes and fittings (WKG)

DUKTUS

Structure of the WKG pipe system

The WKG pipe system consists of ductile iron pipes and socket bends (MMK, MMQ) to EN 545 (water) or EN 598 (sewerage) with TYTON ${ }^{\circledR}$ push-in joints to DIN 28603 which may be restrained if desired.

The pipes are enclosed in thermal insulation formed by a CFC-free rigid polyurethane (PUR) foam with an average density of $80 \mathrm{~kg} / \mathrm{m}^{3}$. This rigid foam is protected from the effects of the weather in one of two ways: for above-ground pipelines (FL), by folded spiralseam outer tubing of galvanized steel to EN 1506 or, as an option, of stainless steel, or for buried pipelines (EL) with a small height of cover which are thus at risk of freezing, by an outer sleeve of high-density polyethylene (HDPE) to EN 253.

The gap in the area of the push-in joint is filled with a ring of soft polyethylene and is covered with a sheet-metal sleeve (in the case of the FL system) or with a shrink-on polyethylene bandage (in the case of the EL system).

Operation

The insulation slows down the heat loss from the pipeline and hence from the drinking water it contains. In this way, even when the water stands still for quite long periods in the pipeline, it is possible for such periods to be waited out without the pipeline freezing. The exact periods depend on a variety of factors such as the ambient temperature, the temperature of the water, the thickness of the insulating layer and special local factors. The tables on p. 254 provide an overview of possible heat loss times.

If these times are not long enough, it is possible for a trace heating system to be incorporated. This system consists of a self-limiting heating cable which is bonded to the pipe carrying the medium and which is switched on at the desired temperature by means of a thermostat. The number and heating capacity of the cables have to be matched to the particular circumstances.

Fields of use

WKG pipes and fittings can be used anywhere where the pipeline can be expected to freeze. Some typical applications are the following:

- Bridge pipelines and pipelines laid above ground Positive locking joint systems (BLS joints) should always be used in this case. The outer covering should be galvanized steel or stainless steel.
- Buried pipelines with small heights of cover

A polyethylene outer sleeve should be used in this case. The grain size of the bedding material should not exceed 0 to 40 mm (rounded grains) or 0 to 11 mm (fragmented material). There is no limit to the corrosiveness of the bedding material. All the types of joint can be used, as dictated by the particular conditions.

Product range

WKG pipes with TYTON ${ }^{\circledR}$ push-in joints to DIN 28 603, or, up to DN 600,
BRS ${ }^{\oplus}$ restrained push-in joints
Folded spiral-seam outer tubing (FL)
HDPE outer sleeve (EL)

DN	Dimensions [mm]				Weight [kg] ~ ${ }^{11}$	
	$\varnothing \mathrm{D}_{\mathrm{a}}$	$\varnothing \mathrm{d}_{1}$	L	S_{D}	FL pipes*	EL-Rohr
80	180	98	94	41.0	112	108
100	200	118	98	41.0	135	129
125	225	144	101	40.5	168	159
150	250	170	104	40.0	207	195
200	315	222	110	46.5	276	261
250	400	274	115	63.0	369	366
300	450	326	120	62.0	453	456
400	560	429	120	65.5	683	696
500	710	532	130	89.0	966	983
600	800	635	130	82.5	1,218	1,266
700	900	738	172	81.0	1,548	1,614
800	1,000	842	184	79.0	1,896	1,974

1) Total weight; other nominal sizes, insulating layers of other thicknesses and trace heating are available on enquiry. * Where pipes are intended for use in above-ground pipelines it is essential to consult our Applications Engineering Division.

WKG pipes with BLS ${ }^{\circledR}$ push-in joints

Folded spiral-seam outer tubing (FL) HDPE outer sleeve (EL)

DN	Dimensions $[\mathrm{mm}]$					Weight [kg] ~1)	
	$\varnothing \mathrm{D}_{\mathrm{a}}$	$\varnothing \mathrm{d}_{1}$	L	$\mathrm{~S}_{\mathrm{D}}$	FL pipes	EL pipes	
80	180	98	207	41.0	121	110	
100	225	118	215	53.5	149	140	
125	250	144	223	53.0	180	171	
150	280	170	230	55.0	212	204	
200	355	222	240	66.5	300	288	
250	400	274	265	63.0	383	378	
300	450	326	270	62.0	476	471	
400	560	429	290	65.5	705	715	
500	710	532	300	89.0	986	1,003	
600	800	635	280	82.5	1,266	1,314	
700	900	738	302	81.0	1,632	1,698	
800	1,000	842	314	79.0	2,004	2,082	

1) Total weight; other nominal sizes, insulating layers of other thicknesses and trace heating are available on enquiry.

WKG socket bends (MMK) with TYTON ${ }^{\circledR}$ push-in joints or, up to DN 600, BRS ${ }^{\circledR}$ restrained push-in joints
Folded spiral-seam outer tubing (FL)/HDPE outer sleeve (EL)

		Dimensions $L_{4}[m m$ DN				
	$\varnothing \mathrm{Da}$	MMK 11°	MMK 22°	MMK 30°	MMK 45°	MMQ $\left(90^{\circ}\right)$
80	180	30	40	45	55	100
100	200	30	40	50	65	120
125	225	35	50	55	75	145
150	250	35	55	65	85	170
200	315	40	65	80	110	220
250	400	50	75	95	130	270
300	450	55	85	110	150	320
400	560	65	110	140	195	430
500	710	75	130	170	240	550
600	800	85	150	200	285	645

Other nominal sizes, insulating layers of other thicknesses and trace heating are available on enquiry. Other types of fitting have to be insulated by the installer. * Where BRS ${ }^{\oplus}$ push-in joints are intended for use in above-ground pipelines it is essential to consult our Applications Engineering Division.

WKG socket bends (MMK) with BLS ${ }^{\circledR}$ push-in joints

Folded spiral-seam outer tubing (FL)/HDPE outer sleeve (EL)

DN	\varnothing Da	Dimensions $\mathrm{L}_{\mathrm{u}}[\mathrm{mm}]$				
		$\begin{gathered} \text { MMK } \\ 11^{\circ} \end{gathered}$	MMK 22°	MMK 30°	$\begin{gathered} \text { MMK } \\ 45^{\circ} \end{gathered}$	MMQ $\left(90^{\circ}\right)$
80	180	30	40	45	55	100
100	225	30	40	50	65	120
125	250	35	50	55	75	145
150	280	35	55	65	85	170
200	355	40	65	80	110	220
250	400	50	75	95	130	270
300	450	55	85	110	150	320
400	560	65	110	140	195	430
500	710	75	130	170	240	-
600	800	85	150	200	285	-

Other nominal sizes, insulating layers of other thicknesses and trace heating are available on enquiry. Other types of fitting have to be insulated by the installer.

Example: Installation of a bridge pipeline using WKG FL system and push-in joints

One sliding hanger per pipe for support distance from joint approx. 0.5 m
Sliding hanger, e. g. made by Huckenbeck (supplied by client).

Heat-shrink end cap at the transition to the non-thermally insulated pipeline

Fig. 1
Manual air-release valve Hawlinger valve is used as standard

The change of length between the pipeline and the bridge can be compensated for by angular deflection at the bends.
If you have any questions, please consult our Applications Engineering Division.

Hangers for above-ground pipelines

Sliding hangers with anti-lift-off guards. For fastening with anchor bolts or to brackets or bridges. Suitable for WKG pipes in line with structural requirements (e. g. made by Huckenbeck, supplied by the client)

Width B of clamp when hangers are spaced 6 m apart

DN	$80-125$	$150-200$	$250-300$	$400-500$	$600-700$	800
B	100	150	200	300	400	450

Heat loss times for standing water in fully filled pipes (initial water temperature $8{ }^{\circ} \mathrm{C}$)

Above-ground pipelines (FL) with folded spiral-seam outer tubing and TYTON ${ }^{\circledR}$ push-in joints

DN of medium pipe	Thickness of insulation S_{D} $[\mathrm{mm}]$	Temperature of ambient air - $20^{\circ} \mathrm{C}$ Cooling to $0^{\circ} \mathrm{C}$ $[\mathrm{h}]$	Cooling to 25 ice $[\mathrm{h}]$	Temperature of ambient air $-30^{\circ} \mathrm{C}$ Cooling to $0^{\circ} \mathrm{C}$ $[\mathrm{h}]$	Cooling to 25% ice $[\mathrm{h}]$
80	41.0	10	21	7	14
100	41.0	12	28	9	19
125	40.5	16	39	11	26
150	40.0	20	49	14	32
200	46.5	31	80	22	53
250	63.0	51	135	36	90
300	62.0	62	167	44	111
400	65.5	89	241	63	161
500	89.0	150	410	106	273
600	82.5	172	472	120	315
700	81.0	199	>500	140	366
800	79.0	224		157	415

For other temperatures of ambient air, please consult our Applications Engineering Division.

Heat loss times for standing water in fully filled pipes (initial water temperature $8^{\circ} \mathrm{C}$)

Buried pipelines (EL) with HDPE outer sleeves and TYTON ${ }^{\circledR}$ push-in joints

DN of medium pipe	Thickness of insulation S_{D} [mm]	Max. depth of frost penetration 1.4 m			
		Height of cover 0.3 m		Height of cover 0.5 m	
		Cooling to $0^{\circ} \mathrm{C}[\mathrm{h}]$	Cooling to 25 \% ice [h]	Cooling to $0^{\circ} \mathrm{C}$ [h]	Cooling to 25 \% ice [h]
80	41.0	24	68	32	102
100	41.0	31	94	41	142
125	40.5	40	130	53	196
150	40.0	49	169	64	254
200	46.5	76	292	100	440
250	63.0	125	> 500	164	> 500
300	62.0	151		199	
400	65.5	214		282	
500	89.0	447		> 500	
600	82.5	> 500			
700	81.0				
800	79.0				

For other depths of frost penetration and heights of cover, please consult our Applications Engineering Division.

Installation instructions for ductile iron pipes with WKG thermal insulation

DUKTUS

Applicability

These installation instructions apply to thermally insulated (WKG) ductile iron pipes and fittings. For the assembly of the joints of pipes or fittings, see the particular installation instructions applicable to ductile iron pressure pipes with

- TYTON® ${ }^{\circledR}$ push-in joints
- restrained BLS® push-in joints
- restrained BRS ${ }^{\oplus}$ push-in joints.

Special notes on transport and storage

When pipes are to be loaded or unloaded or moved about on site, and when they are being installed, slings should be used.
Pipes must only be placed down on at least 10 cm wide lengths of squared timber or other suitable materials spaced about 1.5 m away from the ends of the pipes.

They are not to be:

- put down with a jolt,
- thrown off the vehicle,
- dragged or rolled
- stacked.

Laying tools and other accessories

- TYTON ${ }^{\circledR}$ assembly kit (bent screwdriver and depth gauge),
- V 303 laying tool for DN 80 to DN 400 pipes1),
- chain-hoist or cable-hoist laying tool for all other nominal sizes.

Plus, in the case of pipes with restrained BLS ${ }^{\circledR}$ push-in joints

- copper guide for welded bead
- clamping strap (DN 600 and above); see p. 100.

1) For BRS ${ }^{\circledR}$ push-in joints on pipes of DN 350 size and above, use a chain-hoist laying tool.

DUKTUS

FL system for above-ground pipelines (folded spiral-seam outer tubing)

First the joint is assembled or assembled and locked, as the case may be, and then, depending on the type of joint (TYTON ${ }^{\circledR}$, BRS ${ }^{\oplus}$ * or BLS ${ }^{\circledR}$), one or more rings of soft polyethylene are inserted in the gap that is left between the spigot end and the end-face of the socket.
Finally, the joint is sealed off with a sheet-metal sleeve.

For this purpose, the installer inserts elastic sealing rings (supplied) in the beads formed on the sheet-metal sleeve and fixes the sleeve in position over the joint, in a centralised position, with self-tapping screws.

EL system for buried pipelines (outer sleeve of HDPE)

The gap is first insulated as in the case of the FL system.
The joint is then sealed off with heat-shrinkable material (a heat-shrinkable bandage).
One-piece sleeves have to be slid onto the barrels of the pipes before the joint is assembled.
Clean the surface area which is going to be covered of any grease, dirt and loose particles. Heat this area to about $60^{\circ} \mathrm{C}$ with a propane gas flame set to a soft setting. Peel the backing film protecting the adhesive away from the bandage for a distance of about 150 mm .

* Our applications Engineering Division must be consulted when BRS® or TYTON® pushin joints are going to be used in above-ground pipelines.

DUKTUS

Fix the free end of the bandage over the joint in a centralised position and at right angles to the plane of the joint and wrap the bandage loosely around the outer sleeve while at the same time peeling off the rest of the protective backing film. Overlap the bandage by at least 80 mm in an easily accessible area at the top of the pipeline.

At low ambient temperatures, it is advisable for the inner side of the overlapping part of the bandage and the inner side of the sealing strip to be heated briefly and pressed firmly against the pipes.

From the outside, heat the sealing strip evenly with a soft, constantly moving flame until the texture of the glass-fibre fabric can be seen. While wearing gloves, press the sealing strip firmly against the pipes by hand.
Shrink on the bandage in the circumferential direction using a soft, evenly moved, flame.

The shrinking-on has been properly carried out if

- the whole of the bandage has been shrunk on,
- it rests down flat, without any cold spots or air bubbles, and the sealing adhesive has been pressed out at both ends,
- the overlap on the outer tube is at least 50 mm .

The transition from a WKG thermally insulated pipe to ductile iron pipes with no thermal insulation is made by means of a heat-shrinkable end cap. With the appropriate changes, this is fitted in the same way as the shrink-on bandages.

DUKTUS

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 364).
Cuttable pipes are identified by a continuous longitudinal line (adhesive tape) on the outer tubing or outer sleeve and by the white stamped letters "SR" (Schnittrohr = cuttable pipe) on the end-face of the socket.
Before the medium pipe is cut to the desired length, the outer tubing or outer sleeve and the polyurethane foam have to be removed in the region of the future spigot end.
The length required for the spigot end must be copied from the original pipe or taken from the Tables on pp. 248/249.
When collars (EU and U fittings) having screwed socket joints or bolted gland joints are being used, allowance must be made at the polyurethane foam and the outer tubing or outer sleeve for the larger amount of clear space required.
As dictated by the type of joint, the spigot ends should be finished as directed in the corresponding installation instructions.

Support for the FL system

Ensure that above-ground pipelines have supports, i.e. pipe hangers, of the minimum widths (see p. 253).

Underground installation of EL system

Bedding as per DVGW Arbeitsblatt W 400-2 or EN 805 should be provided for the pipes. In the region of surfaces carrying traffic, the filling of pipeline trenches should follow the Merkblatt für das Verfüllen von Leitungsgräben (issued by the Forschungsgesellschaft für das Straßen- und Verkehrswesen of Cologne). When there are small heights of cover (< 0.5 m), load distributing slabs should be used above the pipeline zone.

Our Applications Engineering Division is at your service to answer any other questions you may have!

Trace heating

When WKG pipes with trace heating are being used, make sure that the heating cable is situated at the bottom of the pipes.

DUKTUS

Coating of fittings

(internal and external)

Structure

In a similar way to what is happening with valves, the powder coating of fittings with epoxy powder is becoming an increasingly important practice. Under EN 545, fittings coated in this way are suitable for use in soils of all classes of corrosiveness.
For this purpose, the fittings are first subjected to surface treatment by abrasive blasting (to give a standard of cleanliness of Sa 2.5). They are then heated to a temperature of approx. $200^{\circ} \mathrm{C}$ and are dipped into a fluidised bed of epoxy powder or are electrostatically coated by the use of a spray gun. Pore-free layers of a thickness of more than $250 \mu \mathrm{~m}$ are obtained when this is done. If the type of system being used is suitable, the coating process can be automated. When they have cooled, the fittings have their coatings made good at the points of suspension and are tested and packed.
The coating of our fittings meets the requirements of EN 14910 and those of the GSK, the Quality Association for the Heavy Duty Corrosion Protection of Powder Coated Valves and Fittings.

RAL GÜTEZEICHEN

DUKTUS

Operation

The action of the epoxy coating in protecting against corrosion is based on its absolutely pore-free nature, which keeps all corrosive factors away from the cast iron. Provided the coating is intact, there is a guarantee of protection. Any injuries to the coating should be avoided or should be repaired as quickly as possible.

Fields of use

Ductile iron fittings with an epoxy finishing layer to EN 14901 can be used for transporting drinking water, non-drinking water, surface runoff, raw water, sewage and other wastewater.
Under EN 545 they can be used in soils of any desired corrosiveness. The grain size of the bedding material should not exceed 0 to 32 mm (rounded grains) of 0 to 16 mm (fragmented grains).

Installation instructions

It is essential to avoid any damage to the internal and external coatings. Should any damage nevertheless occur, it must be repaired as quickly as possible. For this purpose, any loose parts of the coating must be removed and the damaged point repainted with a suitable epoxy paint. The point which has been repaired must be allowed to cure before the repaired fitting is re-installed.

6.2 Internal coatings

Cement mortar lining

Structure

Duktus ductile iron pipes are normally given a cement mortar lining (ZMA) based on blast furnace cement or Portland cement. The ZMA of ductile iron pipes is considered to be an integral part of the product. The requirements and test methods are therefore given in the product standard EN 545.

In the rotary centrifugal process, once the fresh mortar (a mixture of sand, cement and water) has been introduced into it, the pipe is raised to a speed of rotation sufficient to give a centrifugal acceleration at least equal to twenty times that given by the earth's gravity. The fresh mortar is compacted and smoothed by this acceleration and additional vibratory forces. The rotary centrifugal process forces out some of the mixing water. This increases the proportion of fine grains and fine constituents towards the surface of the cement mortar lining
The cement mortar lining is cured at a defined relative humidity and temperature in curing chambers. EN 545 is the standard for the ZMA of ductile iron pipes. Depending on the nominal size of the pipe, the thickness of the ZMA is 4 to 6 mm .

DN	Thickness of layer		Maximum crack width and maximum radial displacement
	Nominal value	Limit deviation *	[mm]
	$[\mathrm{mm}]$		0.4
40 to 300	4	-1.5	0.5
350 to 600	5	-2.0	0.6
700 to 1,200	6	-2.5	

[^16]
Operation

The cement mortar lining has both an active and a passive protective action. The active action is based on an electrochemical process. Water penetrates into the pores of the cement mortar. When this happens the pH of the water rises to a level of more than 12 as a result of the absorption of free lime from the mortar. It is impossible for cast iron to corrode in this pH range.
The passive action results from the physical separation which exists between the pipe's cast iron wall and the water.

Fields of use

Ductile iron pipes with a cement mortar lining based on blast furnace cement or Portland cement can be used to transport all types of water for human consumption which comply with EU Council Directive 98/83/EC.
For other types of water such as raw water for example, the limits governing use are given in the Table below as a function of the type of cement used for the lining.

Water characteristics	Portland cement	Blast furnace cement	High-alumina cement
Minimum pH	$6-12$	$5.5-12$	$4-10$
Maximum content (mg/l) of:			
- corrosive CO_{2}	7	15	Unlimited
- sulphate $\left(\mathrm{SO}_{4}^{-}\right)$	400	3,000	Unlimited
- magnesium $\left(\mathrm{Mg}^{++}\right)$	100	500	Unlimited
- ammonium $\left(\mathrm{NH}_{4}^{+}\right)$	30	30	Unlimited

DUKTUS

Repairing the cement mortar lining
 On-site repairs to the cement mortar lining (ZMA)

All repairs to any damaged parts of the ZMA must be carried out using the repair kit supplied by the pipe manufacturer.

Contents of the repair kit: approx. 5 kg of sand/cement mixture approx. 1 litre of diluted additive.

These components are specially adjusted for use with Duktus drinking water pipes. They must not be replaced by any other material or used to produce classes of cement mortar different from those specified on the repair kit.

Repair instructions

A proper repair can only be made at temperatures of above $5^{\circ} \mathrm{C}$.
Apart from the repair kit, what you will also need are:
Rubber gloves
Dust-tight protective goggles
Wire brush
Spatula
Additional mixing vessel
Possibly drinking water for mixing
If there is severe damage:
Hammer
Cold chisel

Preparing the damaged area

If there is only slight surface damage, simply remove any loose pieces of cement mortar and any pieces which are not firmly attached with the wire brush.
Finally, moisten the damaged area.
If the damage is severe, it is advisable for the cement mortar to be completely removed (down to the bare metal) in the damaged area with a hammer and cold chisel.
The protective goggles must be worn when doing the above!

DUKTUS

Remove the cement mortar in such a way that square edges are obtained:

Right

Damaged area

Cement mortar

Wrong

Damaged area

Do not use excessive force when removing the cement mortar as this may cause the sound cement mortar to become detached in the region next to the damaged area. Remove any loose material which is still present with the wire brush and moisten the damaged area.

Mixing

First of all stir the diluted additive well. Then mix the mortar, adding as little additive and water as possible, until a mixture which can be applied easily with the spatula is obtained - the amount of water contained in the additive is normally all that is needed. To begin with, use only the additive solution and meter it in carefully. Then add extra water if necessary (e. g. at high temperatures in summer).

Application

Once the mortar is easily workable, fill the damaged area with it and level off the surface. Finally, smooth the repaired area, and especially the parts at the edges, with a moistened, wide paintbrush or a moistened dusting brush.

Drying, installation and entry into service

Pipes can be installed immediately; however, the repaired areas are not capable of withstanding any mechanical loads (e. g. impacts, vibration, etc.) until after about an hour, and significantly later in cold, damp weather.

A pipeline must not be put into service until at least 12 hours after a repair.

7 ACCESSORIES

Laying tools and other accessories for pipes and fittings with TYTON ${ }^{\circledR}$, BRS ${ }^{\circledR}$ or BLS ${ }^{\circledR}$ push-in joints

The following laying tools and other accessories are needed for laying and assembling pipes and fittings:
Note: a chain-hoist traction assembly must be used for assembling BRS ${ }^{\circledR}$ push-in joints of DN 350 size and above!

Laying tools

1) Use chain-hoist traction assemblies for BRS® push-in joints of DN 350 size and above.

Lever for sizes up to and including DN 125

Laying tools for nominal sizes up to and including DN 400

	Consisting of		Weight [kg] ~
DN	Type 1	Type 2	
80	1 mounting clamp 1 yoke 2 levers	2 mounting clamps 2 levers	13.8
100			14.0
125			15.0
150			15.5
200			17.1
250			18.1
300			20.5
$350{ }^{11}$			23.5
$400{ }^{1)}$			25.0

1) Use chain-hoist traction assemblies for BRS ${ }^{\oplus}$ push-in joints of DN 350 size and above.

Laying tool type 1 for DN 80 to DN 400 size pipes and fittings with a zinc or zinc-aluminium coating and a finishing layer (silver identifying marking).

Laying tool type 2 for DN 80 to DN 400 size pipes with a cement mortar coating (blue identifying marking).

Laying tool type 3 for DN 80 to DN 400 size pipes and fittings with thermal insulation (WKG) (red identifying marking).

Chain-hoist traction assemblies for nominal sizes from DN 350 to DN 1000

DN	Consisting of	Weight [kg] ~
350 ${ }^{1 /}$	$2 \times 32 \mathrm{kN}$ lever chain-hoists 1 cable yoke 1 traction cable 2500 cm 1 mounting clamp	92
4001)		97
500		101
600		105
700		108
800		112
900	$2 \times 63 \mathrm{kN}$ lever chain-hoists 1 cable yoke 1 traction cable 4800 cm 1 mounting clamp	115
1000		119

1) Use chain-hoist traction assemblies for BRS ${ }^{\circledR}$ push-in joints of DN 350 size and above.

Other accessories

Dusting brush, cotton waste, wire brush, spatula, scraper (e. g. bent screwdriver), paint brush, lubricant, depth gauge.

For cutting of pipes

Use a disc cutter or grinder fitted with a cutting disc for stone, e. g. the C24RT Spezial type. For bevelling the spigot end use a coarse-grain grinding disc.

Laying tools and other accessories for pipes and fittings with BLS ${ }^{\circledR}$
 push-in joints

As well as the usual laying tools and other accessories, the following may also be needed when pipes and fittings with BLS ${ }^{\circledR}$ push-in joints are being laid.

DN	Accessory	Used for
80 to 500	Torque wrench able to apply a torque of at least 60 kN	Tightening the bolts of a clamping ring
80 to 1000	Copper guide of the appropriate nominal size to guide the welded bead	Re-application of welded bead (e. g. to cut pipes)

Laying tools and other accessories for pipes and fittings with BRS ${ }^{\circledR}$
push-in joints

Disassembly tool

The disassembly tool consists of a striking block and the number of disassembly plates shown in the table below.

DN	80	100	125	150	200	250	300	350	400	500	600
Number	4	4	5	6	8	10	12	14	15	19	23

Laying tools and other accessories for fittings with screwed socket and
bolted gland joints

The following laying tools and other accessories are needed for assembling fittings with screwed socket and bolted gland joints.

Laying tools

Other accessories:

Dusting brush, wire brush, spatula, chalk, hammer, paint brush, lubricant.

Laying tools and other accessories for fittings with screwed socket joints

Hook spanner

DN	40	80	100	125	150
Weight [kg] ~	2.4	3.3	4	5.6	6
DN	200	250	300	350	400
Weight [kg] ~	7.7	10.5	10.7	16.2	18

Cutting disk for cement mortar coating with depth stop

Dimensions [mm]			t
D_{a}	d	Weight $[\mathrm{kg}] \sim$	
115	22.2	3.5	0.7

This cutting disk is used for cutting the cement mortar coating from pipes (see page 237). The depth stop effectively prevents the accidental cutting of the cast iron wall.

Rubber sleeves for protecting cement mortar, for pipes with a cement mortar coating (ZMU) and TYTON ${ }^{\circledR}$, BRS ${ }^{\circledR}$ or BLS ${ }^{\oplus}$ push-in joints

These are combination sleeves which will fit TYTON ${ }^{\circledR}$, BRS^{\circledR} and BLS ${ }^{\circledR}$ push-in joints.

DN	Dimensions [mm]
80	155
100	155
125	160
150	165
200	170
250	180
300	200
400	210
500	210
600	265
700	265
800	265
900	265
1000	265

One-piece shrink-on sleeves for pipes with a cement mortar coating (ZMU) and TYTON ${ }^{\text {® }}$, BRS ${ }^{\circledR}$ or BLS $^{\circledR}$ push-in joints

DN	Product designation				Dimensions [mm]	
	Product	Loading class	Width L	Nominal size (DN)	L	ØD/Ød¹)
80	MPSM	C30	or $\begin{aligned} & 300 \\ & \\ & 300\end{aligned}$	DN XXX	300	200/80
100					300	235/100
125					300	280/135
150					300	280/135
200					300	340/205
250	PMO	C30		DN XXX	300	405/243
300					300	460/275
350					300	515/314
400					300	565/345
500					300	680/414

1) $\varnothing D / \varnothing d=\sim$ in unshrunk state/smallest shrunken size; dimensions and degrees of shrinkage may vary slightly depending on the product; tape material should be used on joints of DN 600 size and above - see next page

Pre-cut shrink-on sleeves of tape material with a sealing strip for pipes with a cement mortar coating (ZMU) DN 600 to DN 1000

Width $L=300 \mathrm{~mm}$ (12 inch) for TYTON®/BRS®
Width $L=450 \mathrm{~mm}$ (17 inch) for BLS ${ }^{\oplus}$

DN	Product designation				Dimensions [mm] ZL (cut length) ${ }^{\text {1) }}$
	Product	Loading class	Width L	Nominal size (DN)	
600	MEPS	C30	300 or 450	DN XXX	2,500
700	inc. WPC	$\sqrt{ } 8 \times 12 \text { or } 8 \times 17$			2,950
800		or	300 or 450	DN XXX	3,260
900	WLOX C30 inc. CLH-150-300 or 450				3,600
1000			3,960		

[^17]
8 PIPELINE COMPONENTS AVAILABLE FROM SPECIALIST SUPPLIERS

PN 10, PN 16 and PN 25 butterfly valves

DUKTUS

DN	L	Dimensions [mm]											
		PN 10				PN 16				PN 25			
		e_{2}	e_{3}	h_{1}	h_{2}	e_{2}	e_{3}	h_{1}	h_{2}	e_{2}	e_{3}	h_{1}	h_{2}
200	230	180	246	222	175	180	246	222	175	226	277	320	185
250	250	204	270	222	205	228	303	244	205	256	307	320	215
300	270	253	328	244	230	253	328	244	230	324	390	348	245
350	290	273	348	244	260	295	390	321	270	354	420	348	280
400	310	321	418	321	290	321	418	321	295	384	465	387	315
500	350	373	480	346	340	390	492	346	360	444	535	579	370
600	390	425	532	346	395	446	446	504	425	494	585	579	425
700	430	490	570	505	455	523	523	579	460	574	685	676	485
800	470	565	655	484	515	592	592	579	520	634	745	676	550
900	510	625	715	580	562	672	672	533	570	709	820	676	600
1000	550	695	785	580	630	732	732	676	635	784	905	751	665

Obtainable from specialist suppliers. The dimensions given are non-binding values applicable to butterfly valves made by the Erhard company. Please ask the manufacturer for any further details.

F4 and F5 series gate valves PN 10 and PN 16

to EN 1171

DN	$L_{1}(\mathrm{~F} 4)$	Dimensions [mm]	
	140	$L_{2}(\mathrm{~F} 5)$	h
50	150	240	250
65	170	250	270
80	180	270	310
100	190	280	335
125	200	300	385
150	210	325	445
200	230	350	480
250	250	400	610
300	270	450	740
350	290	500	800
400	310	550	940
500	350	600	1,030

Obtainable from specialist suppliers

Ductile iron gate valve with BLS ${ }^{\circledR}$ push-in joints

Multamed Gate Valve 2 with BLS ${ }^{\circledR}$ push-in joints, produced by the Erhard Armaturen company

Coating

- internal: enamel
- external: epoxy powder coating

Nominal size DN	Angular deflection $\left[{ }^{\circ}\right]$	PFA $[\mathrm{bar}]$
80	5	
100	5	
125	5	16
150	5	
200	4	

[^18]Ductile iron butterfly valve with BLS ${ }^{\circledR}$ push-in joints to EN 593

ROCO butterfly valve with BLS ${ }^{\circledR}$ push-in joints, produced by the Erhard Armaturen company

Coating

- internal: enamel
- external: epoxy powder coating

Nominal size DN	Angular deflection $\left[{ }^{\circ}\right]$	PFA $[\mathrm{bar}]$
200	4	16
250	4	
300	4	

[^19]Ductile iron underground hydrants with BLS ${ }^{\circledR}$ push-in joint
to DIN 3221

Underground hydrants with BLS ${ }^{\circledR}$ push-in joint, produced by the Erhard Armaturen company

Coating

- internal: enamel
- external: epoxy powder coating

Nominal size DN	Height of cover of pipe $[\mathrm{m}]$	Overall height h $[\mathrm{mm}]$	Weight $[\mathrm{kg}]$	PFA $[\mathrm{bar}]$
80	1.00	865	32	
	1.25	1,115	37	16

[^20]
Ductile iron post fire hydrants

 with BLS ${ }^{\circledR}$ push-in jointto DIN 3222
DUKTUS

Post fire hydrants with BLS ${ }^{\circledR}$ push-in joint, produced by the Erhard Armaturen company

Coating

- internal: enamel
- external
- below ground: enamel base coating with two-coat plastic finishing layer
- above ground: sprayed zinc with RAL 3000 "flame red" finishing layer

Nominal size DN	Height of cover of pipe $[\mathrm{m}]$	Height h_{1} $[\mathrm{~mm}]$	Height h_{2} $[\mathrm{~mm}]$	2 upper outlets with fixed couplings	2 lower outlets with fixed couplings	Weight $[\mathrm{kg}]$	PFA $[\mathrm{bar}]$
80	1.25	2,233	1,030	B DIN 14 318	-	94	
100	1.50	2,483		DIN	100	16	

For matching duckfoot bend for hydrants see Chapter 2, p. 82; please ask the manufacturer for any further details required.

Material:
Coating:
steel or stainless steel
epoxy internally and externally

DN	length in central position [mm]			Weight [kg] ~		
	PN 10	PN 16	PN 25	PN 10	PN 16	PN 25
80	200		210	16		21
100	200		220	20		33
125	200		220	25		42
150	200		230	34		53
200	220		230	48		74
250	220	230	250	65	74	102
300	220	250	250	72	92	131
350	230	260	270	94	126	193
400	230	270	280	122	162	246
500	260	280	300	162	240	324
600	260	300	320	205	330	432
700	260	300	340	256	366	571
800	290	320	360	352	482	801
900	290	320	380	405	546	886
1000	290	340	400	484	715	1,270

Dismantling pieces are available for larger DN's and higher pressures and can be obtained from specialist suppliers. The dimensions are non-binding values which apply to type PO dismantling pieces made by the Porn Marlener Metallverarbeitung GmbH company.
Please ask the manufacturer for any further details required

Anchoring clamps for applying retrospective restraint to pipes and fittings with push-in and screwed socket joints

Material: up to and including DN 300: ductile cast iron DN 350 and above: steel
Coating: epoxy internally and externally
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { DN } & \begin{array}{c}d_{1} \\ {[\mathrm{~mm}]}\end{array} & \begin{array}{c}\text { PFA } \\ \text { [bar] }\end{array} & \begin{array}{c}\text { Weight } \\ {[\mathrm{kg}] \sim}\end{array} \\ \hline 40 & 56\end{array}\right]$

* Anchoring clamps are available for higher pressures on enquiry and can be obtained from specialist suppliers. The dimensions are non-binding values which apply to HUC anchoring clamps made by the Huckenbeck company. Clamps are two-piece up to and including DN 200 and three-piece above that size. Please ask the manufacturer for any further details required.

Transport clamps made by the Huckenbeck company for pipes and fittings

Material:

Steel
Steel or plastic rollers
Coating: Uncoated black, galvanized or stainless steel
Versions: Two-roller or four-roller
Clamps also available for cable conduits
Spacing: For ductile iron pipes it is enough for one clamp to be fitted every 6 m or behind each socket

DN	80	100	125	150	200	250	300	350
\varnothing of casing tube or pipe	250	250	300	300	350	400	450	500

DN	400	500	600	700	800	900	1000
\varnothing of casing tube or pipe	600	700	800	900	1,100	1,400	1,400

Other versions are available on request. Please state the inside diameter of the casing tube or pipe in mm. Obtainable from specialist suppliers.

9 PLANNING, TRANSPORT, INSTALLATION

9.1 Transport and storage

DUKTUS

By carrying out comprehensive checks on all pipes and fittings during and after manufacture, including tests of their strength and leak tightness, we ensure that they are all in perfect condition when they leave us.
Provided our products are carefully handled during transport, storage and installation, the drinking water pipelines for which they are used will provide many years of trouble-free service.
We therefore recommend that you only allow pipes and fittings to be unloaded and installed under the supervision of properly trained personnel.

Unloading and storage of pipes and pipe bundles

Pipes of up to DN 350 nominal size are supplied bundled. Above this size they are supplied as individual pipes. The exact number of pipes per bundle is shown in the table below. The weights of the pipes can, if required, be found from the pages dealing with the individual pipes.

Pipes per bundle								
DN	80	100	125	150	200	250	300	350
6 m pipes	15	15	10	6	6	4	4	4

When pipes or bundles of pipes are to be loaded or unloaded by crane, slings should be used. If individual pipes are unloaded with crane hooks, this must be done with wide, padded hooks fitted at the top of the ends of the pipe as otherwise there is a risk of the pipe and its coating or lining being damaged. Particularly with large pipes, an insert shoe matched to the shape of the pipe must be placed between the hook and the pipe.

As an alternative to loading and unloading by crane, suitable fork-lift trucks may also be used. In this case, particular attention must be paid to the following points:

- The pipes must not be able to tilt off the forks sideways (the forks should be at a width of at least 3 m).
- The pipes must not be able to roll off the forks.
- The forks must be adequately padded to prevent them from damaging the pipe.

During the loading or unloading operation, no-one must stand below the pipe or pipe bundle or on it or in the danger area around the crane.

If pipes are to be moved around by hand, the caps fitted into the ends must first be removed temporarily.

DUKTUS

Pipes must only be placed down or stacked on lengths of squared timber or other suitable materials.

They are not to be:

- put down with a jolt,
- thrown off the vehicle,
- dragged, or to be rolled for any great distance.

They are to be

- secured against rolling and slipping,
- stored on level ground able to take their weight.

If ductile iron drinking water pipes are stored in stacks, they must rest on lengths of squared timber at least 10 cm wide, spaced approx. 1.5 m in from the ends of the pipes.

Maximum allowable heights of stack

DN	Layers
$\mathbf{8 0 - 1 5 0}$	15
$200-300$	10
$350-600$	4
$700-1000$	2

To prevent accidents, you should avoid building any stacks higher than 3 m . Thermally insulated ductile iron pipes (WKG pipes) must not be stacked!

Unstrapping bundles of pipes

Steel or plastic straps are used to bundle our pipes. The straps should only be cut with suitable tools such as tin snips or side cutters. Using cold chisels, crowbars, pickaxes or the like may cause damage to the external coating of the pipes and also means a greater risk of accidents. Before the straps are cut, make sure that

- the bundle of pipes is standing on non-sloping ground which is as level as possible and which is able to carry the weight of the bundle,
- the pipes are secured against rolling and slipping,
- no-one is standing beside the bundle of pipes or on top of it.

DUKTUS

Laying out the pipes on the installation site

If the pipes are laid out beside the pipe trench before they are installed, they should be stored on lengths of squared timber as described above and should be secured against slipping and rolling. The caps fitted to seal off the ends of drinking water pipes should not be removed at this stage. They should only be removed just before the pipes are installed.

Storage of gaskets

To ensure that the pipeline will operate reliably, it is essential that the gaskets fitted are only ones which comply with the relevant quality specifications and are supplied with the pipes by the manufacturer. If other gaskets are used this may invalidate any claims under guarantee.

Gaskets should be stored in a cool, dry place without being in any way deformed. They should be protected from direct sunlight. Care must be taken to ensure that they are not damaged and do not get dirty.

At temperatures of below $0^{\circ} \mathrm{C}$, the hardness of the gaskets increases to some degree. To make fitting easier, gaskets should therefore be stored at a temperature of more than $10^{\circ} \mathrm{C}$ when the outside temperature is below $0^{\circ} \mathrm{C}$.

Gaskets should not be removed from the store until just before they are going to be fitted and should be checked for any fouling or damage at this time.

9.2 Pipeline trenches and bedding

DUKTUS

Pipeline trenches should be set out and dug in accordance with current technical codes.
Codes to be observed include:
EN 805, EN 1610, DIN 18 300, DIN 4124, DIN 50929 Part 3, ONORM B 2538, DIN 30 375 Part 2, DVGW Arbeitsblatt W 400-2 or GW 9, ATV DVGW Arbeitsblatt A 139 and the Merkblatt on the filling of pipeline trenches.

Installation

Pipes and fittings should be installed in accordance with our installation instructions. The external coatings of pipes and the bedding material used for them should be selected in accordance with DIN 30675 Part 2.

Pipe coating	Thickness of coating	Coating recommended for joints	Anode backfill	Fields of use in the form of soil classes
Zinc coating with finishing layer, to EN 545	Zinc$200 \mathrm{~g} / \mathrm{m}^{2}$	None	No	I, II
			Yes	I, II, III ${ }^{\text {2) }}$
Zinc-aluminium coating with finishing layer, to EN 545	Zincaluminium $400 \mathrm{~g} / \mathrm{m}^{2}$	None	No	I, II, III ${ }^{\text {2) }}$
Cement mortar coating to EN 15542	5.0 mm	Rubber sleeves or heat-shrink material, or B-50M ${ }^{1)}$ or C-50M ${ }^{1)}$ coating to DIN $30672^{\text {1) }}$	No	I, II, III

1) A B-50M or C-30M coating to DIN 30672 may be used for joints at sustained operating temperatures of $\mathrm{T} 30^{\circ} \mathrm{C}$.
2) Not suitable when there is constant exposure to eluates of $\mathrm{pH}<6$ and in peaty, boggy, muddy and marshy soils.
The directions given in section 4.1 of DIN 30675 Part 2 must be followed.

DUKTUS

Soil classes I to III should be determined in accordance with DVGW Arbeitsblatt GW 9 or DIN 50929 Part 3. The classification which applies in this case is as follows

Classification of soils into main groups under DIN 50929 Part 3		
Evaluation number	Soil class	Aggressiveness of soil
>0	I a	Not aggressive
-1 to -4	I b	Of low aggressiveness
-5 to -10	II	Aggressive
<-10	III	Highly aggressive

Not only the aggressiveness of the soil but also its grain size has a part to play in the selection of the external coating for pipes. DVGW Arbeitsblatt W 400-2 provides an overview of the allowable grain sizes.

Pipe material	Coating	Grain size of rounded material	Grain size of fragmented material
Ductile iron pipes	Zinc/bitumen Zinc/epoxy Zinc-aluminium/ epoxy	$0-32 \mathrm{~mm}$ Individual grains up to a max. of 63 mm	$0-16 \mathrm{~mm}$ Individual grains up to a max. of 32 mm
Ductile iron pipes	Cement mortar	$0-63 \mathrm{~mm}$ Individual grains up to a max. of 100 mm	$0-63 \mathrm{~mm}$ Individual grains up to a max. of 100 mm

Filling of the pipeline trench

Pipeline trenches in roadways should be filled as directed in the "Merkblatt für das Verfüllen von Leitungsgräben" issued by the Forschungsgesellschaft für das Straßen- und Verkehrswesen e.V. (FGSV) of Cologne and the "Zusätzliche Technische Vertragsbedingungen und Richtlinien für Erdarbeit im Straßenbau" (ZTV E - StB 94).

Pressure testing

The execution of pressure tests on pressure pipelines is governed by EN 805 or DVGW Arbeitsblatt W 400-2. During pressure testing, all work on the pipelines being tested must be stopped. Particularly in the case of pressure pipelines, all personnel must remain at an adequate safe distance from the pipeline.

9.3 Dimensioning of concrete thrust blocks

Summary of DVGW Merkblatt GW 310
DUKTUS

This summary of the on-site procedure applies only to thrust blocks at dead ends, changes of direction and branches lying in a horizontal plane, under the following limiting conditions:

- nominal size \leq DN 300
- concrete of strength class C30/37
- thrust block laid out symmetrically to the line along which the force to be absorbed (N, RN) acts
- load spread angle in the concrete: $2 a_{k}=90^{\circ}$
- outside temperatures of between $+10^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$
- horizontal terrain
- concrete placed against undisturbed soil and vertical wall of trench
- depth of foundation h of the thrust block: $1.0 \mathrm{~m} \leq \mathrm{h} \leq 3.0 \mathrm{~m}$
- height h_{G} of thrust block against the trench wall: $\frac{1}{4} h \leq h_{G} \leq \frac{2}{3} h$
- curing time until the pressure test: at least 3 days
- approximately square bearing area of thrust block against the trench wall: $h_{G} \times b_{G}$
- water table lower than bottom face of thrust block

For practical reasons, no figures are given for the values $\left(h_{R}\right.$ and $\left.b_{R}\right)$ defining the area for transmitting force between the pipeline and the thrust block and it is recommended that the concrete covers the full width, to the sockets, of the pipeline component and that there is adequate concrete cover above the component.

For parameter values which differ from those given above, reference should be made to DVGW Arbeitsblatt GW 310, January 2008 version.

DUKTUS

Taper

Branch

Bend

Characteristic longitudinal force: $\quad \mathrm{N}_{\mathrm{K}}=\mathrm{p} \cdot \frac{\pi \cdot \mathrm{d}_{\mathrm{a}}^{2}}{4} \quad[\mathrm{kN}]$

Characteristic resultant force:

$$
R_{N, k}=2 N_{k} \cdot \sin \frac{\alpha_{R}}{2} \quad \rightarrow \quad R_{N, k}=N_{k} \cdot a \quad[k N] \quad \text { where } \quad a=2 \cdot \sin \alpha_{R} / 2
$$

(for a see table below)
$d_{a}=$ outside diameter of pipe [m]
$p^{a}=$ internal pressure (test pressure) $\left[\mathrm{kN} / \mathrm{m}^{2}\right] \rightarrow 1 \mathrm{bar}=100 \mathrm{kN} / \mathrm{m}^{2}$

α	11°	22°	30°	45°	Dead ends and branches	90°
a	0.2	0.4	0.5	0.8	1.0	1.4

DUKTUS

The following table shows the values of the resultant force RN,k calculated for the most widely used nominal sizes and bends, for a test pressure of 15 bars. With these figures, it is now possible to calculate the required bearing area of a thrust block against the soil.

DN	$N_{k}[\mathrm{kN}]$	$R_{N, k}[\mathrm{kN}]$ for bends of angles				
	$(15$ bar)	$111 / 4^{\circ}$	$221 / 2^{\circ}$	30°	45°	90°
65	7.9	1.5	3.1	4.1	6.1	11.2
80	11.3	2.2	4.4	5.9	8.7	16.0
100	16.4	3.2	6.4	8.5	12.6	23.2
125	22.4	4.8	9.5	12.6	18.7	34.5
150	34.0	6.7	13.3	17.6	26.1	48.1
200	58.1	11.4	22.7	30.1	44.4	82.1
250	88.4	17.3	34.5	45.8	67.7	125.1
300	125.2	24.5	48.9	64.8	95.8	177.1
350	168.3	33.0	65.7	87.1	128.8	238.1
400	216.8	42.5	84.6	112.2	165.9	305.6
500	333.4	65.4	130.1	172.6	255.2	471.5
600	475.0	93.1	185.4	245.9	363.6	671.8
700	641.6	125.8	250.4	332.1	491.1	907.4
800	835.2	163.7	325.9	432.3	639.3	$1,181.2$
900	$1,052.1$	206.2	410.5	544.6	805.2	$1,478.9$
1000	$1,293.9$	253.7	504.9	669.8	990.3	$1,829.9$

Required bearing area against the soil:

$$
A_{G}=b_{G} \cdot h_{G} \quad\left[m^{2}\right] \quad A_{G}=\frac{R_{N, k}}{\sigma_{h, w}} \quad\left[m^{2]}\right.
$$

Allowable $\sigma_{\mathrm{h}, \mathrm{w}}=$ allowable soil pressure $\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
(see graphs on page 299)

DUKTUS

Allowable soil pressure (allowable $\sigma_{\mathrm{h}, \mathrm{w}}$) as a function of soil group and depth of foundation h for thrust blocks with a square bearing area $\left(h_{G} / b_{G}=1\right)$

Below water table Above water table

NB1: Sand, gravel or sharp-edged, natural broken stone, tightly compacted
NB2: Sand or sandy gravel, compacted to medium tightness
NB3: Sand or sandy gravel, loosely compacted
B1: Till, loam or clay, of firm consistency (not kneadable)
B2: Loam, silt or clay, of at least semi-firm consistency (difficult to knead)
B3: Loam, silt or clay, of at least soft consistency (easily kneadable)
For any desired test pressure p, the formula which applies to bearing area is:

$$
A_{G}=\frac{R_{N, k}}{\text { Allowable } \sigma_{h, w}} \cdot \frac{p}{15}\left[m^{2}\right]
$$

Example:

Pipeline
Test pressure
Soil pressure
Angle of bend

DN 200
p = 30 bar
Allowable $\sigma_{\mathrm{h}, \mathrm{w}}=50 \mathrm{kN} / \mathrm{m}^{2}$
$\alpha_{k}=30^{\circ}$

DUKTUS

Question: How large does the bearing area AG against the soil need to be?
$\mathrm{R}_{\mathrm{N}}=30.1 \mathrm{kN}$ (see table on p. 298)

$$
A_{\mathrm{s}}=\frac{30,1}{50} \cdot \frac{30}{15}\left(\mathrm{~m}^{2}\right)
$$

$$
A_{6}=1,204 \mathrm{~m}^{2}
$$

For calculating concrete thrust blocks under DVGW Merkblatt 310, there is also a tool for calculation available at www.eadips.org.

Table for the dimensioning of concrete thrust blocks at bends and branches
Figures were calculated for a test pressure of 15 bars and a soil pressure of $100 \mathrm{kN} / \mathrm{m}^{2}$. Area $=$ breadth $\mathrm{B} \times$ height H

DN	cm^{2} $\mathrm{~cm} \times \mathrm{cm}$	$\alpha=11^{\circ}$	$\alpha=22^{\circ}$	$\alpha=30^{\circ}$	$\alpha=45^{\circ}$	$\alpha=90^{\circ}$	Dead ends and branches ${ }^{1)}$
80	Area	500	500	590	870	1,600	1,130
	$\mathrm{~B} \times \mathrm{H}$	20×25	20×25	24×25	29×30	38×42	34×34
100	Area	500	640	850	1,260	2,320	1,640
	$\mathrm{~B} \times \mathrm{H}$	20×25	25×26	29×30	35×36	48×49	40×41
125	Area	500	950	1,260	1,870	3,450	2,440
	B $\times \mathrm{H}$	20×25	30×32	35×36	43×44	58×60	49×50
150	Area	670	1,330	1,760	2,610	4,810	3,400
	B $\times \mathrm{H}$	20×25	36×37	42×42	50×52	69×70	58×59
200	Area	1,140	2,270	3,010	4,440	8,210	5,810
	B $\times H$	33×35	48×48	55×55	67×67	91×91	76×77
250	Area	1,730	3,450	4,580	6,770	12,510	8,840
	B $\times H$	42×42	59×59	68×68	82×83	112×112	94×94
300	Area	2,450	4,890	6,480	9,580	17,710	12,520
	B $\times H$	49×50	70×77	80×81	98×98	133×133	112×112
400	Area	4,250	8,460	11,220	16,590	30,560	21,680
	B $\times H$	65×66	92×92	106×106	129×129	175×175	147×148

1) These values apply only to dead ends and branches of the nominal sizes specified.

9.4 Lengths of pipeline to be restrained

Summary of DVGW Merkblatt GW 368
(June 2002 version)

DUKTUS

Forces are exerted at bends, branches, dead ends and tapers in pipelines and the size of these forces can be calculated on the basis of, for example, DVGW Merkblatt GW 310. In pipelines which already have restrained joints, such as welded or flanged joints for example, these forces are transmitted by the pipe joints. In pipelines with non-restrained joints, e. g. push-in joints (TYTON ${ }^{\circledR}$ joints) or screwed socket joints, these forces have to be

- absorbed by means of concrete thrust blocks (see GW 310), or
- transmitted longitudinally and transferred to the surrounding soil by providing restraint at a number of sockets (socket restraint).

The number of sockets which have to be restrained by the provision of longitudinal restraint depends on the test pressure, the nominal size of the pipes and the standard to which the pipeline trench has been backfilled (type of soil, degree of compaction). The forces generated by the internal pressure are resisted by the following:

- at bends, branches, dead ends and tapers: the frictional forces between the pipe wall and the surrounding soil,
- at bends: additionally, the bearing resistance of the soil which acts on the adjoining pipes.

DUKTUS

Coefficient of friction and soil pressure

Coefficient of friction

The coefficient of friction μ for the friction between the soil and the pipe is between 0.1 and 0.6. Our recommended assumed figures are as follows:
$\mu=0.5 \quad$ for non-cohesive sands, gravels and tills (soil types NB1 to NB3 under GW 310)
$\mu=0.25$ for very loamy sand, sandy loam, marl, loess or loess loam and clay, of at least semi-firm consistency (soil type B1 under GW 310)
$\mu=0.5 \quad$ for pipes with a cement mortar coating
$\mu=0 \quad$ when a pipeline is laid below the water table and/or in cohesive soils of soft and stiff consistency which are difficult to compact (soil types B2 to B4 under GW 310) \rightarrow In such cases we recommend restraining the entire pipeline.

Soil pressure

The soil pressure which is possible very much depends on the degree of compaction of the trench filling immediately surrounding the pipeline. This should be at least $D_{p r}=95 \%$ In this latter case, it can be expected that the values of allowable horizontal soil pressure (allowable $\sigma_{h, ~ w}$) given in the graph from GW 310 (see page 299) will be reduced by 50%.

Notes

At least the following must always be restrained:

- in the case of bends: 2 sockets on each side,
- in the case of branches and dead ends: 2 sockets,
- in the case of tapers: 2 sockets on the side of the larger nominal size.

DUKTUS

For a variety of parameters such as coefficient of friction, soil pressure, height of cover of pipes and system test pressure, the tables shown on the following pages give the lengths of pipeline to be restrained for ductile iron pipes.
Where a bend at which the resultant force is directed towards the surface is to be restrained, the length of pipeline to be restrained is the same as for a branch or dead end (180°)
There are other calculations which can be carried out by going to www.eadips.org.

Applicability

The DVGW's guideline GW 368 (June 2002 version) applies to the assembly and installation of restrained socket joints for restraining ductile iron pipeline systems and fittings to EN 545 or DIN 28650 for the supply of water and for restraining ductile iron valves.

The tables on the following pages apply provided the following conditions

 are met:- The pipeline trench is completely filled to the height H .
- The material used to fill the pipeline trench is carefully compacted ($\mathrm{D}_{\mathrm{pr}}=95 \%$)
- There is no water in the pipeline trench.

Pipeline trench completely filled

Length of pipeline to be restrained L [m] when the following parameters apply
Soil in the pipeline zone: Sand, gravel or broken stone, tightly compacted (NB1)
Coefficient of friction:
Soil pressure: $\mu=0.50$

Height of cover of pipeline: $\mathrm{H}=1.00[\mathrm{~m}]$ (pipeline trench completely filled)

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 10 bars

DN	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	12	12	12	15	18	22	25	28	31	34
90°	12	12	12	12	12	12	12	12	15	18	21	24	27	30
45°	12	12	12	12	12	12	12	12	12	13	16	19	22	25
30°	12	12	12	12	12	12	12	12	12	12	12	15	18	21
22°	12	12	12	12	12	12	12	12	12	12	12	12	13	16
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 15 bars

Bend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	13	16	19	24	30	34	39	44	48	52
90°	12	12	12	12	12	12	13	19	24	29	34	38	43	47
45°	12	12	12	12	12	12	12	13	19	24	29	33	38	42
30°	12	12	12	12	12	12	12	12	14	19	24	29	33	38
22°	12	12	12	12	12	12	12	12	12	14	19	24	28	33
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	16

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 21 bars

Bend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	14	19	23	27	34	41	48	55	61	67	73
90°	12	12	12	12	13	17	21	29	36	43	49	56	62	68
45°	12	12	12	12	12	12	15	23	30	37	44	51	57	63
30°	12	12	12	12	12	12	12	15	25	33	40	46	52	58
22°	12	12	12	12	12	12	12	12	20	27	34	41	48	54
11°	12	12	12	12	12	12	12	12	12	12	16	23	29	36

Length of pipeline to be restrained L [m] when the following parameters apply Soil in the pipeline zone: Sand, gravel or broken stone, tightly compacted (NB1)

Coefficient of friction:
Soil pressure:
Height of cover of pipeline: $\mathrm{H}=1.00[\mathrm{~m}]$ (pipeline trench completely filled)

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 30 bars

Bend	80	100	125	150	200	250	300	400	500	600
180°	12	15	18	21	27	32	38	49	59	69
90°	12	12	12	14	20	26	32	43	53	63
45°	12	12	12	12	15	24	29	38	48	58
30°	12	12	12	12	12	15	21	32	43	53
22°	12	12	12	12	12	12	16	27	38	48
11°	12	12	12	12	12	12	12	12	18	29

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 45 bars

Bend	80	100	125	150	200	250	300
180°	18	22	26	31	40	49	57
90°	12	16	20	25	34	43	51
45°	12	12	14	19	28	37	45
30°	12	12	12	14	23	32	40
22°	12	12	12	12	17	26	35
11°	12	12	12	12	12	12	14

Length of pipeline to be restrained L [m$]$ when the following parameters apply Soil in the pipeline zone: Very loamy sand, sandy loam, loam, clay, marl (B1) Coefficient of friction: $\quad \mu=0.25$
Soil pressure:
Allowable $\sigma_{\mathrm{h}, \mathrm{w}}=30 \mathrm{kN} / \mathrm{m}^{2}$
Height of cover of pipeline: $\mathrm{H}=1.00[\mathrm{~m}]$ (pipeline trench completely filled)
Length of pipeline to be restrained $L[m]$ at test pressure of 10 bars

DN	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	13	17	21	24	32	39	45	52	58	63	69
90°	12	12	12	12	12	15	18	26	33	40	46	53	58	64
45°	12	12	12	12	12	12	12	18	25	32	39	45	51	57
30°	12	12	12	12	12	12	12	12	17	25	31	38	44	50
22°	12	12	12	12	12	12	12	12	15	17	24	30	37	43
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	16

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 15 bars

DN	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	15	18	21	27	32	38	49	59	69	78	87	96	104
90°	12	12	12	13	19	25	31	42	52	62	71	81	89	97
45°	12	12	12	12	12	16	22	32	44	54	64	73	82	90
30°	12	12	12	12	12	12	14	26	37	47	57	66	75	84
22°	12	12	12	12	12	12	12	17	29	39	49	59	68	77
11°	12	12	12	12	12	12	12	12	12	12	22	31	41	50

Length of pipeline to be restrained $L[m]$ at test pressure of 21 bars

Bend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	17	20	25	29	37	45	53	68	83	96	110	122	134	145
90°	12	13	17	21	30	38	46	61	76	90	103	115	127	139
45°	12	12	12	12	21	29	37	53	68	82	95	108	120	132
30°	12	12	12	12	13	21	29	45	60	74	88	101	113	125
22°	12	12	12	12	12	13	21	37	52	67	80	94	106	120
11°	12	12	12	12	12	12	12	18	22	38	52	66	79	92

DUKTUS

Length of pipeline to be restrained $L[m]$ when the following parameters apply Soil in the pipeline zone: Very loamy sand, sandy loam, loam, clay, marl (B1) Coefficient of friction: $\mu=0.25$
Soil pressure:
Allowable $\sigma_{\mathrm{h}, \mathrm{w}}=30 \mathrm{kN} / \mathrm{m}^{2}$
Height of cover of pipeline: $\mathrm{H}=1.00[\mathrm{~m}]$ (pipeline trench completely filled)
Length of pipeline to be restrained $L[m]$ at test pressure of 30 bars

Dend	80	100	125	150	200	250	300	400	500	600
180°	23	28	34	41	53	64	76	98	118	138
90°	17	22	28	34	47	58	70	92	113	132
45°	12	13	19	25	38	50	61	84	105	125
30°	12	12	12	17	30	42	53	76	97	118
22°	12	12	12	12	21	33	45	68	89	110
11°	12	12	12	12	12	12	14	37	59	81

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 45 bars

Bend	80	100	125	150	200	250	300
180°	35	43	52	61	80	97	114
90°	29	36	46	55	73	91	108
45°	20	27	37	46	65	82	100
30°	12	19	29	38	57	74	92
22°	12	12	20	29	48	66	83
11°	12	12	12	12	16	34	52

Length of pipeline to be restrained L [m$]$ when the following parameters apply Soil in the pipeline zone: Very loamy sand, sandy loam, loam, clay, marl (B1) Coefficient of friction: $\quad \mu=0.50$
Soil pressure:
Allowable $\sigma_{\mathrm{h}, \mathrm{w}}=30 \mathrm{kN} / \mathrm{m}^{2}$
Height of cover of pipeline: $\mathrm{H}=1.00[\mathrm{~m}]$ (pipeline trench completely filled)
Length of pipeline to be restrained $L[m]$ at test pressure of 10 bars

Bend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	12	12	12	15	19	22	25	28	31	34
90°	12	12	12	12	12	12	12	12	16	19	23	26	29	32
45°	12	12	12	12	12	12	12	12	12	15	19	22	25	28
30°	12	12	12	12	12	12	12	12	12	12	15	18	22	25
22°	12	12	12	12	12	12	12	12	12	12	12	15	18	21
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Length of pipeline to be restrained $L[m]$ at test pressure of 15 bars

Bend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	12	15	18	24	29	34	39	43	47	52
90°	12	12	12	12	12	12	15	21	26	31	36	40	45	49
45°	12	12	12	12	12	12	12	16	22	27	32	37	41	45
30°	12	12	12	12	12	12	12	13	18	23	28	33	38	42
22°	12	12	12	12	12	12	12	12	14	19	25	29	34	39
11°	12	12	12	12	12	12	12	12	12	12	12	16	20	25

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 21 bars

Dend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	13	18	22	26	33	41	48	54	61	67	73
90°	12	12	12	12	15	19	23	30	38	45	52	58	64	70
45°	12	12	12	12	12	14	19	26	34	41	48	54	60	66
30°	12	12	12	12	12	12	15	23	30	37	44	51	57	63
22°	12	12	12	12	12	12	12	18	26	33	40	47	53	60
11°	12	12	12	12	12	12	12	12	12	19	26	33	40	46

DUKTUS

Length of pipeline to be restrained $L[m]$ when the following parameters apply Soil in the pipeline zone: Very loamy sand, sandy loam, loam, clay, marl (B1) Coefficient of friction: $\mu=0.50$
Soil pressure:
Allowable $\sigma_{\mathrm{h}, \mathrm{w}}=30 \mathrm{kN} / \mathrm{m}^{2}$
Height of cover of pipeline: $\mathrm{H}=1.00[\mathrm{~m}]$ (pipeline trench completely filled)
Length of pipeline to be restrained $L[m]$ at test pressure of 30 bars

Bend	80	100	125	150	200	250	300	400	500	600
180°	12	13	16	20	26	32	37	48	59	69
90°	12	12	13	16	23	28	34	45	56	66
45°	12	12	12	12	18	24	30	41	52	62
30°	12	12	12	12	14	20	26	37	48	58
22°	12	12	12	12	12	16	22	33	44	54
11°	12	12	12	12	12	12	12	18	29	40

Length of pipeline to be restrained $L[m]$ at test pressure of 45 bars

Bend	80	100	125	150	200	250	300
180°	17	21	25	30	39	48	57
90°	14	18	22	27	36	45	54
45°	12	13	18	23	32	41	49
30°	12	12	14	18	28	37	45
22°	12	12	12	14	23	32	41
11°	12	12	12	12	12	16	26

Length of pipeline to be restrained L [m] when the following parameters apply Soil in the pipeline zone: Sand, gravel or broken stone, tightly compacted (NB1) Coefficient of friction: $\mu=0.50$
Soil pressure:
Allowable $\sigma_{\mathrm{h}, \mathrm{w}}=40 \mathrm{kN} / \mathrm{m}^{2}$
Height of cover of pipeline: $\mathrm{H}=1.50[\mathrm{~m}]$ (pipeline trench completely filled)
Length of pipeline to be restrained $L[m]$ at test pressure of 10 bars

Bend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	12	12	12	12	13	15	18	20	22	25
90°	12	12	12	12	12	12	12	12	12	13	15	18	20	22
45°	12	12	12	12	12	12	12	12	12	12	12	14	16	19
30°	12	12	12	12	12	12	12	12	12	12	12	12	13	15
22°	12	12	12	12	12	12	12	12	12	12	12	12	12	12
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 15 bars

Dend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	12	12	12	16	20	24	27	31	34	37
90°	12	12	12	12	12	12	12	13	17	21	25	28	31	35
45°	12	12	12	12	12	12	12	12	13	17	21	24	28	31
30°	12	12	12	12	12	12	12	12	12	14	18	21	25	28
22°	12	12	12	12	12	12	12	12	12	12	14	18	21	25
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 21 bars

Bend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	12	15	18	23	28	33	38	43	48	52
90°	12	12	12	12	12	12	15	20	26	31	36	41	45	50
45°	12	12	12	12	12	12	12	16	22	27	32	37	42	46
30°	12	12	12	12	12	12	12	12	18	24	29	34	38	43
22°	12	12	12	12	12	12	12	12	15	20	25	30	35	40
11°	12	12	12	12	12	12	12	12	12	12	12	17	22	27

DUKTUS

Length of pipeline to be restrained L [m] when the following parameters apply Soil in the pipeline zone: Sand, gravel or broken stone, tightly compacted (NB1)

Coefficient of friction:
Soil pressure:
Height of cover of pipeline: $\mathrm{H}=1.50[\mathrm{~m}]$ (pipeline trench completely filled)

Length of pipeline to be restrained $L[m]$ at test pressure of 30 bars

Bend	80	100	125	150	200	250	300	400	500	600
180°	12	12	12	13	17	21	25	33	41	48
90°	12	12	12	12	15	19	23	31	38	45
45°	12	12	12	12	12	15	19	27	34	42
30°	12	12	12	12	12	12	15	23	31	38
22°	12	12	12	12	12	12	12	19	27	35
11°	12	12	12	12	12	12	12	12	13	21

Length of pipeline to be restrained $L[m]$ at test pressure of 45 bars

Bend	80	100	125	150	200	250	300
180°	12	12	17	20	27	32	39
90°	12	12	14	17	24	30	36
45°	12	12	12	13	20	26	32
30°	12	12	12	12	16	22	29
22°	12	12	12	12	12	18	25
11°	12	12	12	12	12	12	12

Length of pipeline to be restrained L [m$]$ when the following parameters apply Soil in the pipeline zone: Very loamy sand, sandy loam, loam, clay, marl (B1) Coefficient of friction: $\quad \mu=0.25$
Soil pressure:
Allowable $\sigma_{\mathrm{h}, \mathrm{w}}=30 \mathrm{kN} / \mathrm{m}^{2}$
Height of cover of pipeline: $\mathrm{H}=1.50[\mathrm{~m}]$ (pipeline trench completely filled)
Length of pipeline to be restrained $L[m]$ at test pressure of 10 bars

Bend DN	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	12	14	17	22	27	32	37	41	46	50
90°	12	12	12	12	12	12	13	18	23	28	33	38	42	46
45°	12	12	12	12	12	12	12	13	18	23	28	32	37	41
30°	12	12	12	12	12	12	12	12	12	17	22	27	32	36
22°	12	12	12	12	12	12	12	12	12	12	17	22	26	31
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 15 bars

Dend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	13	18	22	26	34	41	48	56	62	69	75
90°	12	12	12	12	13	18	22	30	37	45	52	59	65	72
45°	12	12	12	12	12	12	16	24	32	39	46	53	60	67
30°	12	12	12	12	12	12	12	18	26	34	41	48	55	62
22°	12	12	12	12	12	12	12	13	21	28	36	43	50	57
11°	12	12	12	12	12	12	12	12	12	12	19	23	30	37

Length of pipeline to be restrained $L[m]$ at test pressure of 21 bars

Bend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	13	16	19	25	31	36	47	58	68	78	88	97	106
90°	12	12	13	15	21	27	32	43	54	64	74	84	93	102
45°	12	12	12	12	15	21	26	38	48	59	69	79	88	97
30°	12	12	12	12	12	15	21	32	43	54	64	74	83	92
22°	12	12	12	12	12	12	15	27	37	48	58	68	78	87
11°	12	12	12	12	12	12	12	12	17	37	38	48	58	68

DUKTUS

Length of pipeline to be restrained $L[m]$ when the following parameters apply Soil in the pipeline zone: Very loamy sand, sandy loam, loam, clay, marl (B1) Coefficient of friction: $\mu=0.25$
Soil pressure:
Allowable $\sigma_{\mathrm{h}, \mathrm{w}}=30 \mathrm{kN} / \mathrm{m}^{2}$
Height of cover of pipeline: $\mathrm{H}=1.50[\mathrm{~m}]$ (pipeline trench completely filled)
Length of pipeline to be restrained $L[m]$ at test pressure of 30 bars

DN	80	100	125	150	200	250	300	400	500	600
180°	16	19	23	28	36	44	52	68	83	98
90°	12	15	19	23	32	40	48	64	79	94
45°	12	12	13	17	26	34	42	58	73	88
30°	12	12	12	12	20	29	37	53	68	83
22°	12	12	12	12	14	23	31	47	63	78
11°	12	12	12	12	12	12	12	26	42	57

Length of pipeline to be restrained $L[m]$ at test pressure of 45 bars

Bend	80	100	125	150	200	250	300
180°	24	29	36	42	54	67	79
90°	20	25	31	38	50	63	75
45°	14	19	25	32	44	57	69
30°	12	13	20	26	39	51	64
22°	12	12	14	20	33	45	58
11°	12	12	12	12	12	24	36

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ when the following parameters apply Soil in the pipeline zone: Very loamy sand, sandy loam, loam, clay, marl (B1) Coefficient of friction: $\quad \mu=0.50$

Soil pressure:
Height of cover of pipeline: $\quad \mathrm{H}=1.50[\mathrm{~m}]$ (pipeline trench completely filled)

Length of pipeline to be restrained $L[m]$ at test pressure of 10 bars

Bend DN	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	12	12	12	12	13	16	18	20	23	25
90°	12	12	12	12	12	12	12	12	12	14	16	18	21	23
45°	12	12	12	12	12	12	12	12	12	12	13	16	18	20
30°	12	12	12	12	12	12	12	12	12	12	12	13	16	18
22°	12	12	12	12	12	12	12	12	12	12	12	12	13	15
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 15 bars

Bend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	12	12	13	16	20	24	28	31	34	38
90°	12	12	12	12	12	12	12	14	18	22	26	29	32	36
45°	12	12	12	12	12	12	12	12	15	19	23	26	30	33
30°	12	12	12	12	12	12	12	12	13	17	20	24	27	31
22°	12	12	12	12	12	12	12	12	12	14	18	21	25	28
11°	12	12	12	12	12	12	12	12	12	12	12	12	15	18

Length of pipeline to be restrained $L[m]$ at test pressure of 21 bars

Bend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	12	15	18	23	29	35	39	44	48	53
90°	12	12	12	12	12	13	16	21	27	32	37	42	46	51
45°	12	12	12	12	12	12	13	18	24	29	34	39	44	48
30°	12	12	12	12	12	12	12	16	21	26	32	36	41	46
22°	12	12	12	12	12	12	12	13	18	24	29	34	38	43
11°	12	12	12	12	12	12	12	12	12	13	19	24	29	34

DUKTUS

Length of pipeline to be restrained L [m$]$ when the following parameters apply Soil in the pipeline zone: Very loamy sand, sandy loam, loam, clay, marl (B1)

Coefficient of friction:
Soil pressure:
Height of cover of pipeline: $\quad \mathrm{H}=1.50[\mathrm{~m}]$ (pipeline trench completely filled)

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 30 bars

DN	80	100	125	150	200	250	300	400	500	600
180°	12	12	12	13	18	22	26	34	41	49
90°	12	12	12	12	16	20	24	32	39	47
45°	12	12	12	12	13	17	21	29	36	44
30°	12	12	12	12	12	14	18	26	34	41
22°	12	12	12	12	12	12	15	23	31	38
11°	12	12	12	12	12	12	12	13	21	28

Length of pipeline to be restrained $L[m]$ at test pressure of 45 bars

Bend	80	100	125	150	200	250	300
180°	12	14	17	21	27	33	39
90°	12	12	15	18	25	31	37
45°	12	12	12	15	22	28	34
30°	12	12	12	13	19	25	31
22°	12	12	12	12	16	22	29
11°	12	12	12	12	12	12	18

DUKTUS

Under EN 805, pipelines have to be subjected to an internal pressure test. For water pipelines, the codes governing the execution of this pressure test are EN 805 or DVGW Arbeitsblatt W 400-2.

Test sections

It may be necessary for pipelines of quite a considerable length to be divided into sections. The test sections should be decided on in such a way that

- the test pressure is reached at the lowest point of each test section,
- at least 1.1 times the system test pressure (MDP) is reached at the highest point of each test section,
- the amount of water required for the test can be supplied and drained away,
- the maximum length of a test section is not more than $2.5-3 \mathrm{~km}$.

The pipeline should be vented as thoroughly as possible, using "pigs" if necessary, and should be filled with drinking water from the lowest point.

Backfilling and restraint

If necessary, pipelines must be covered with backfill material before the pressure test to avoid any changes in length. Backfilling around the joints is optional.

At their ends and at bends, branches and tapers, non-restrained pipelines must be anchored to resist the forces generated by the internal pressure. The thrust blocks required for this purpose should be dimensioned as directed in GW 310.

There is no need for thrust blocks to be installed for restrained systems provided that GW 368 has been observed in deciding on the lengths to be restrained.

There is no point in carrying out a pressure test against a closed shut-off valve. The temperature at the outer wall of the pipeline should be kept as constant as possible and must not exceed $20^{\circ} \mathrm{C}$.

DUKTUS

Filling the pipeline

It is useful for the pipeline to be filled from the lowest point so that the air contained in it is able to escape easily from venting points of adequate size provided at the highest points of the pipeline.

We recommend the following filling rates in $1 / \mathrm{s}$

DN	100	150	200	250	300	400	500	600	700	800	900	1000
Filling rate	0.3	0.7	1.5	2	3	6	9	14	19	25	32	40

For drinking water pipelines, initial disinfection should be carried out in conjunction with the pressure test. This requires a concentration of at least 50 mg of chlorine per litre of water. Depending on how dirty the pipeline is, the level of chlorine may be increased to up to 150 mg per litre of water.
The relationship between the amount of water added and the increase in pressure obtained may serve as an indication of any leaks or of inadequate venting. As the pressure increases, the water consumption should therefore be noted bar by bar.

Water consumption for 1 bar

bar	mm	in litres
$0-1$		
$1-2$		
$2-3$		
$3-4$		
$5-6$		

Where a pipeline has been properly laid and is properly vented, the amount of water which needs to be pumped in per bar of increased pressure is approximately constant. Allowing for the compressibility of water and the elastic properties of the pipes, this amount is (theoretically) approximately 50 ml per cubic metre of space within the pipeline per bar. In practice, this figure is around 1.5 to 2 times higher because air trapped in the joints of pipes and fittings and in valves has to be compressed.
The Table shows the amounts of water required, in litres per bar of increased pressure, for pipeline lengths from 100 to 1000 m , including a 100 \% allowance for trapped air.

DN	Amounts of water in litres per bar of increased pressure, for pipeline lengths [m] given in the column headings									
	100	200	300	400	500	600	700	800	900	1000
80	0.05	0.09	0.14	0.19	0.24	0.28	0.33	0.38	0.42	0.47
100	0.07	0.13	0.20	0.26	0.33	0.39	0.45	0.52	0.59	0.65
125	0.12	0.24	0.36	0.48	0.60	0.72	0.84	0.96	1.05	1.20
150	0.18	0.35	0.53	0.70	0.87	1.05	1.22	1.40	1.54	1.75
200	0.32	0.64	0.97	1.28	1.60	1.93	2.25	2.55	2.90	3.20
250	0.52	1.04	1.57	2.10	2.60	3.15	3.65	4.20	4.70	5.20
300	0.78	1.56	2.35	3.15	3.90	4.67	5.45	6.25	7.05	7.80
350	1.06	2.12	3.20	4.25	5.30	6.38	7.43	8.50	9.55	10.60
400	1.44	2.90	4.30	5.80	7.20	8.65	10.10	11.55	13.00	14.40
500	2.35	4.70	7.05	9.40	11.80	13.10	16.20	18.80	21.10	23.50
600	3.45	7.00	10.50	14.00	17.15	21.00	24.50	28.00	31.50	35.00

The standard procedure

DUKTUS

Performing a pressure test

The following procedures for performing a pressure test on ductile iron pipes are described in DVGW Arbeitsblatt W 400-2:

- standard procedure (for pipes of all nominal sizes, with or without a cement mortar lining)
- shortened standard procedure (for pipes of nominal sizes up to DN 600 with a cement mortar lining)

We describe below the two procedures which are most frequently followed, the standard procedure and the shortened standard procedure.

In both these procedures the level of test pressure is as follows:

- for pipelines with an allowable operating pressure of up to 10 bars: $1.5 \times$ nominal pressure
- for pipelines with an allowable operating pressure of above 10 bars: nominal pressure +5 bars.

The standard procedure

The standard procedure is carried out in three phases:

- preliminary test
- pressure drop test
- main test

Preliminary test

The purpose of the preliminary test is to saturate the cement mortar lining and to extend the pipeline. To do this, the test pressure is kept constant for a period of 24 hours by pumping in more water as and when required. If any leaks are found or any changes in length exceeding the allowable limits occur, the pipeline must be de-pressurised and the reason found and remedied.

DUKTUS

Pressure drop test

The purpose of the pressure drop test is to establish that the pipeline is free of air.
Pockets of air in the pipeline may result in incorrect measurements and may mask small leaks.

A volume of water $\Delta \mathrm{V}$ sufficient to cause a drop in pressure $\Delta \mathrm{p}$ of at least 0.5 bars is drawn off from the pipeline. The volume of water $\Delta \mathrm{V}$ drawn off is measured. The pipeline must then be re-pressurised to the test pressure.

The pipeline is considered to have been adequately vented if $\Delta \mathrm{V}$ is no greater than the allowable change in volume $\Delta \mathrm{V}_{\text {zul }}$. If it is greater, then the pipeline must be vented again.
$\Delta \mathrm{V}_{\text {zul }}$ is calculated as follows:

$$
\Delta V_{z u l}=1.5 \cdot a \cdot \Delta p \cdot L
$$

$\Delta V_{\text {zul }}=$ allowable change in volume [cm $\left.{ }^{3}\right]$
$\Delta \mathrm{p}=$ measured drop in pressure [bar]
$\mathrm{L} \quad=$ length of the section tested [m]
a $=$ pressure constant characteristic of the size of pipe $\left[\mathrm{cm}^{3} /(\mathrm{bar} \times \mathrm{m})\right]$ \rightarrow see Table below

DN	a	DN	a
80	0.314	400	9.632
100	0.492	500	15.614
125	0.792	600	23.178
150	1.163	700	32.340
200	2.147	800	43.243
250	3.482	900	55.679
300	5.172	1000	69.749
350	7.147	1200	103.280

DUKTUS

Main test

Following the pressure drop test, the main test is then carried out.
The duration of the test is as follows:

Up to	DN 400	3 h
	DN 500 to DN 700	12 h
more than		
DN 700	24 h	

The test conditions are considered to have been met if the pressure loss at the end of the test is no higher than is specified below:

Nominal pressure	Test pressure	Max. pressure loss
10	15 bar	0.1 bar
16	21 bar	0.15 bar
more than 16	$\mathrm{PN}+5 \mathrm{bar}$	0.2 bar

Test report

A test report should be produced. Templates for test reports are included in DVGW Arbeitsblatt W 400-2. The details required, such as the following, can be seen in these templates:

- description of the pipeline
- test parameters
- description of the performance of the test
- findings during the test
- note indicating report has been checked

The shortened standard procedure

The advantage of the shortened standard procedure is above all that it saves an enormous amount of time. The time required is only about 1.5 hours.

The shortened standard procedure is carried out in three phases:

- saturation phase
- pressure drop test
- leak test

Saturation phase

To achieve a high level of saturation, the test pressure is kept constant for half an hour by pumping in more water as and when required. The key factor in saturation is first and foremost the level of the test pressure. Unduly low pressure cannot be compensated for by increasing the length of the saturation phase.

Pressure drop test

The purpose of the pressure drop test is to establish that the pipeline is free of air. Pockets of air in the pipeline may result in incorrect measurements and may mask small leaks.

A volume of water $\Delta V_{\text {zul }}$ (see below) is drawn off from the pipeline at the test pressure. The resulting drop in pressure $\Delta \mathrm{p}$ is measured. This becomes the allowable drop in pressure $\Delta p_{\text {zul }}$ in the subsequent leak test. The pipeline must be re-pressurised to the test pressure after the pressure drop test.
$\Delta \mathrm{V}_{\text {zul }}$ is calculated as follows:

$$
\Delta V_{m u}=(D N, L) /(100, k)
$$

$\Delta \mathrm{V}_{\text {zul }}$	$=$	
allowable change in volume $\left[\mathrm{cm}^{3}\right]$		
$100 \times \mathrm{k}$	$=$	
length of the section tested $[\mathrm{m}]$		
		proportionality factor, $\mathrm{k}=1 \mathrm{~m} / \mathrm{cm}^{3}$

The pipeline is considered to have been adequately vented if, when the volume of water $\Delta \mathrm{V}_{\mathrm{zu}}$ is drawn off, the drop in pressure is equal to or greater than the minimum levels specified for Δp in the table below.

Nominal size DN	Minimum drop in pressure $\Delta \mathrm{p}$ $[\mathrm{bar}]$
80	1.4
100	1.2
150	0.8
200	0.6
300	0.4
400	0.3
500	0.2
600	0.1

DUKTUS

Leak test

The pipeline is considered not to leak if the loss of pressure Δp goes down at a constant rate over equal intervals of time and if, over the duration of the leak test, it does not exceed the level $\Delta p_{z u}$ found in the pressure drop test. The duration of the test is one hour.

Test report

A test report should be produced. Templates for test reports are included in DVGW Arbeitsblatt W 400-2. The details required, such as the following, can be seen in these templates:

- description of the pipeline
- test parameters
- description of the performance of the test
- findings during the test
- note indicating report has been checked

9.6 Disinfection of drinking water pipelines

DUKTUS

Disinfection needs to be carried out both on the drinking water itself and on the infrastructure used to supply it. There are a variety of disinfectants and different methods of disinfection which can be used to produce the disinfectant effect. Only when satisfactory test results have been obtained is the disinfection of a pipeline considered to have been successfully completed.

General

Water supply companies have to provide drinking water which is in a satisfactory state hygienically. This requirement is laid down in the German Foodstuffs and Consumer Goods Law, the Federal Epidemic Control Law and the European Drinking Water Directive. Under these codes, drinking water must be of a nature such that its consumption does not harm public health. A prerequisite for this is that the drinking water pipelines are in a hygienically satisfactory condition.
This is achieved by disinfecting the pipelines.
Disinfection covers all the measures which reduce the number of bacteria in such a way that they do not adversely affect the quality of the water transported in the pipelines. Such measures do relate to the drinking water but they also relate to the infrastructure used to supply it.
Under the Foodstuffs and Consumer Goods Law, pipelines are "requisites which are used in distributing drinking water and which thus come into contact with it"
Drinking water pipelines must be disinfected in accordance with DVGW Arbeitsblatt W 291. For ductile iron pipes with a cement mortar lining, it is useful for disinfection to be carried out at the same time as the pressure test.
When drinking water pipelines are being laid, the greatest possible care should be taken at the outset to stop pipes which will later be carrying water from getting dirty. You should stop pipes from getting dirty as a result of actions by the personnel, as a result of items of equipment used (dirty rags used to wipe out sockets, etc.) or as a result of pollutants in the air (e. g. oily exhaust fumes from two-stroke pipe cutters). The ends of pipelines should be sealed off tightly in such a way that neither groundwater nor dirty water nor animal life can get in.

DUKTUS

Disinfection is essential in the following cases:

- before drinking water pipelines are put into service
- after repairs and other work on the pipeline network
- if the drinking water becomes stagnant
- if drinking water pipelines become polluted with bacteria

Flushing out of drinking water pipelines

Under DVGW Arbeitsblatt W 291, flushing out with drinking water is the simplest means of reducing the concentration of bacteria and is normally all that is needed for pipelines of small nominal sizes up to DN 150. It is possible that this will make any additional disinfection unnecessary.

When flushing out takes place, ensure that the flow velocity is high enough (at least $1.5 \mathrm{~m} / \mathrm{s}$). The flushing action can be boosted by simultaneous pigging or by flushing out with a mixture of air and water.

The volume of water available to flush out the pipeline should be at least 3 to 5 times the capacity of the pipeline (for pipes of DN 150 size and below) or 2 to 3 times the capacity of the pipeline (for pipes of DN 200 size and above).

Attention should be paid to the following points when flushing out pipelines:

- You should only use items of equipment, such as hoses, which are suitable for drinking water and have been flushed out and, if at all possible, disinfected.
- Sloping pipelines should be flushed out from the top downwards.
- Any air which is injected should be free of oil and dust.
- Water from the section flushed out must not get into the supply network or to consumers.
- There must not be any non-allowable drop in pressure on the pipeline network.
- It must not be possible for dirty water to be sucked back into the pipeline when it is being drained.
- After flushing with a mixture of air and water, the pipeline must be fully vented.

Disinfectants

The choice of disinfectant should be made on the basis of the local conditions. These include for example whether the disinfectant can be properly handled and will be properly effective and whether it can be satisfactorily disposed of.
The following are the disinfectants most frequently used for disinfecting drinking water pipelines:
sodium hypochlorite, potassium permanganate, hydrogen peroxide and chlorine dioxide.
Due to the checks required under the German Hazardous Materials Regulations, a critical view has to be taken of the use of disinfectants containing chlorine. If you cannot manage without a disinfectant, you should use mainly hydrogen peroxide or potassium permanganate. Both of these can be used as a working solution in a concentration which is below the threshold for hazardous materials (see Schlicht, issue 2/2003 of the magazine bbr).

Sodium hypochlorite (NaOCI)

Sodium hypochlorite is the most widely used disinfectant.
It is commercially available as a sodium hypochlorite solution (chlorine bleach solution). The solution should contain at least 12 \% of free chlorine (150 to 160 g of chlorine per litre). Note that when the solution is stored there is a steady fall in the free chlorine content. When solution has been in store for any great length of time, the chlorine content should therefore be checked.
A well-tried disinfectant solution for cast iron pipes with a cement mortar lining is for example a concentration of 50 mg of chlorine per litre of water.
For rechlorination, we recommend using a higher concentration (up to about 150 mg of chlorine per litre of water).
The pH of the sodium hypochlorite solution is between 11.5 and 12.5. When a pipeline is being disinfected, such a solution necessarily increases the pH of the water being treated. We do not advise reducing the pH by mixing acids with the solution because this may cause chlorine gas to be released and may cause an accident. Mixing with very hard water may result in the precipitation of calcium carbonate.

DUKTUS

Disinfectant solutions containing chlorine must always be treated to make them safe before they are allowed to make their way into the sewers or any waterways or bodies of water. This can be done by dilution or by chemical neutralisation with sodium thiosulphate.
Dechlorination is also possible by filtration through activated carbon filters.

Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$

Hydrogen peroxide is a colourless liquid which mixes well with water. The commercially available solutions used have concentration of 35% and 50%.
Hydrogen peroxide gradually breaks down into water and oxygen and this process is speeded up by the effects of heat, light and dust and by heavy metal compounds and organic materials. The solution must therefore be stored where none of these things can affect it.
Disinfectants containing hydrogen peroxide solutions are commercially available under a variety of brand names.
Commercially available hydrogen peroxide solutions are always diluted before being used for disinfection. They should not be used on site in a concentration of more than 5 \%.
Concentrations of 150 mg per litre of water and standing times of 24 hours have proved suitable for newly laid pipelines. Unlike solutions containing chlorine, hydrogen peroxide can be drained into the sewers at these concentrations.
There is normally no need for the solution to be treated before it is drained into the sewers.

Potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$

Potassium permanganate is available in the form of violet crystals and has a virtually unlimited shelf life in this form. Its solubility in water is very much dependent on temperature ($28 \mathrm{~g} / \mathrm{litre}$ of water at $0^{\circ} \mathrm{C}, 91 \mathrm{~g} / \mathrm{litre}$ of water at $30^{\circ} \mathrm{C}$).
Depending on its concentration, the solution is coloured as follows: deep violet for strong solutions, reddish violet for medium strength solutions and pink for weak solutions.

DUKTUS

Being easy to work with and dispose of, potassium permanganate has been increasingly widely used for disinfection in recent years.
Disinfection with a potassium permanganate solution is carried in much the same way as with chlorine, except that 3 to 4% concentrations are used in this case.
The concentration used should be about 10 mg of potassium permanganate to 1 litre of water. Potassium permanganate solutions can be completely reduced by adding ascorbic acid (vitamin C). This can be recognised by a change in the colour of the solution from violet to colourless.

Chlorine dioxide $\left(\mathrm{ClO}_{2}\right)$

Chlorine dioxide is a gas which is freely soluble in water and which is produced from two separate components, namely a sodium chlorite solution and sodium peroxide sulphate. Always follow the manufacturer's instructions when working with the ready-made solution. The container for the concentrated chloride dioxide stock solution (0.3 weight\%) must be such that no chlorine dioxide gas is able to escape.

Chemical properties
In well sealed containers, the individual components for producing chlorine dioxide will remain stable and can be stored almost indefinitely. Chlorine dioxide itself is produced by mixing component 1 and component 2. Chlorine dioxide may break down into ionic end products when acted on by light and heat. The ready-mixed solution should therefore be stored in a cool, dark place. Under these conditions, a 0.3 \% aqueous solution of chlorine dioxide of neutral pH can be kept for around 40 days at $22^{\circ} \mathrm{C}$.

Stock solution
An aqueous solution of 0.3% or $3 \mathrm{~g} / \mathrm{litre}$ of ClO_{2}; this is added to the water to obtain the desired concentration of disinfectant.

Disposal
When water distribution systems are being disinfected, the excess chlorine dioxide and the chlorite, one of the by-products of its chemical reaction, must be de-activated (e. g. with calcium sulphite filters or activated carbon filters) before they are drained into the sewers or an open receiving water.

DUKTUS

Disinfection procedures

Stand-in-place procedure

In this procedure disinfection is achieved by leaving the solution to stand in the pipeline for a fairly long period (not less than 12 hours). It is important in this procedure to ensure that the proportion in which the disinfectant solution is mixed with the water remains constant.
Infeed of the disinfectant solution must not be stopped until the entire pipeline is filled with it.

Of course, no disinfectant solution must be allowed to get into any part of the pipeline network which is in use!
While the solution is left to stand in the pipeline, you should also operate any gate valves or hydrants so that they too are disinfected.
If there are very stubborn bacterial deposits in the pipeline it will need to be disinfected more than once. The concentration of the disinfectant solution may be increased in this case.
It is also essential for the pipeline to be flushed out again with an adequate volume of water at a high flow velocity.
The disinfection process must be repeated until no microbiological contamination is found in the samples taken.
When sodium hypochlorite is used, there should still be evidence of chlorine in the water at the end of the stand-in-place period.

Flow procedure

With pipelines of large nominal sizes, it may be advantageous for the pipelines to be flushed out and disinfected at the same time over quite a long period of time.
If this is done, the concentration of the disinfectant in the water flowing out must be checked repeatedly in the course of the flushing-out process.
The total pipeline content should be replaced to 2 to 3 times.

DUKTUS

Disinfection during the pressure test

The combining of the disinfection and pressure testing of a pipeline has proved to be a successful technique, the water which is used for the pressure testing being water which already has disinfectant admixed with it. The high pressure forces the disinfectant solution into the pores of the cement mortar lining. With this technique it is essential for the pipeline being disinfected to be isolated from all pipelines which are in service.

Disinfection measures when work is done on existing pipelines

When repairs are made or new pipes are connected in at a later date, there are often compelling reasons why a section of a network has to go back into service very quickly, meaning that disinfection cannot be carried out by the procedures described above. Other measures then have to be taken to ensure that the drinking pipeline will be in a satisfactory state hygienically once the work has been completed.
For instance, the parts which are installed may already have been washed in clean water or disinfectant solution. Once the work is completed the pipeline should then be flushed out with water at a suitably high flow velocity.
Should any additional disinfection of the pipeline be necessary, care must be taken to see that no disinfectant solution gets into any of the adjoining parts of the system.
The pipeline may not be put back into operation until it has been thoroughly flushed out.

Disposal

Disinfectant solutions must be disposed of without any harm being done to the environment. Basically, all the relevant DIN standards and DVGW Arbeitsblätter must be observed. Particular note should be taken of DVGW Arbeitsblatt W 291 and the European Drinking Water Directive.
Close attention should also be paid to all product-specific information from disinfectant manufacturers, to the safety data sheets and to accident prevention regulations.

DUKTUS

Microbiological checks and release for use

Once pipelines have been disinfected, i. e. once the flushing-out has been completed, water samples must be taken from them for microbiological examination. The samples should be taken from the ends of the pipelines and, where the pipelines are of any great length, from individual sections as well.
When taking samples, it is imperative that you take the steps specified in the standards document known as "German Standard Methods for the Examination of Water, Wastewater and Sludge" (DEV). These include the draining, cleaning and flame sterilisation of the valves used for sampling.
Under the existing directives and guidelines, disinfection can be regarded as successful if microbiological examination of the water shows that the colony count does not exceed the benchmark figure of 100 per ml of water. At the same time, the water must not contain any Escherichia coli (E. coli) or any coliform bacteria.
If either of these requirements is not met, disinfection of the pipeline must be repeated.
Only when the results of the appropriate microbiological examinations show that everything is microbiologically safe can the drinking water pipeline be released for use. In all examinations, the guidelines laid down in the European Drinking Water Directive must be followed.

The disinfection process

To sum up, you must observe the following steps in your procedure when disinfecting drinking water pipelines (see also DVGW Arbeitsblatt W 291):

- Flush out the pipeline
- Disinfect the pipeline
- Drain off and if necessary neutralise the disinfectant solution after the appropriate stand-in-place time
- Flush out the pipeline
- Take samples and perform a microbiological examination

Only when the tests give satisfactory results can the pipeline which has been connected in be put into service.
In view of the important function performed by the disinfection of drinking water pipelines, it is essential for the process described above to be adhered to exactly.

9.7 Hydraulic calculation of drinking water pipelines

Calculations are needed to ensure that a pipeline will perform properly in hydraulic terms. High flow velocities result in considerable pressure losses. Particularly when pipelines are long, the flow velocity has a major impact on the economics of the supply system as a whole.
Low flow velocities result in the water standing still (stagnating) for long periods. This being the case, it has to be ensured that there is a sufficiently high exchange of water for hygienic reasons (to prevent turbidity and microbial contamination).

The texts governing the hydraulic dimensioning of water pipelines are DVGW Arbeitsblatt GW 303-1 and DVGW Arbeitsblatt GW 400-1.
The optimum flow velocities as a function of the type of pipeline (main pipeline, connecting pipeline, etc.) are specified in GW 400-1. These are mainly between 1.0 m/s and $2.0 \mathrm{~m} / \mathrm{s}$.
GW 303-1 has something to say about, amongst other things, the operating roughness (k2, which is referred to as $\mathbf{k i}$ - integral roughness - in it) of pipeline networks. What are subsumed under integral roughness are all the features of a pipeline or pipeline network which set up a resistance to flow, such as the roughness of the walls, socket transitions, deposits, and the effect of components inserted in pipelines (valves, bends, tapers, etc.). The following standard values have been laid down which apply equally to all pipeline materials:
$\mathrm{ki}=0.1 \mathrm{~mm}$ for trunk mains and feeder mains which run for a considerable distance
$\mathrm{ki}=0.4 \mathrm{~mm}$ for pipelines which run largely for a considerable distance
$\mathrm{ki}=1.0 \mathrm{~mm}$ for new networks; this is an approximation which takes into account a high level of interconnection.

From the tables given below it is possible to make a rough estimate of the flow velocity (v) and the pressure losses (I), as a function of the DN, integral roughness (ki) and the volumetric flow rate (Q)

A calculation tool for the hydraulic calculation of ductile iron pipes is available for downloading free of charge at www.eadips.org..

Q [1/s]	DN 80			
	v [m/s]	$\begin{gathered} \mathrm{k}_{1}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{i}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{i}=1.0 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$
0.50	0.10	0.232	0.258	0.303
0.60	0.12	0.320	0.360	0.427
0.70	0.14	0.420	0.477	0.572
0.80	0.16	0.532	0.610	0.737
0.90	0.18	0.656	0.758	0.924
1.00	0.20	0.791	0.992	1.130
1.25	0.25	1.181	1.400	1.738
1.50	0.30	1.641	1.975	2.474
1.75	0.35	2.171	2.645	3.339
2.00	0.40	2.770	3.412	4.334
2.25	0.45	3.438	4.274	5.457
2.50	0.50	4.173	5.233	6.710
2.75	0.55	4.976	6.287	8.091
3.00	0.60	5.846	7.437	9.601
3.25	0.65	6.784	8.683	11.24
3.50	0.70	7.788	10.03	13.01
3.75	0.75	8.859	11.46	14.91
4.00	0.80	9.996	13.00	16.93
4.25	0.85	11.20	14.63	19.09
4.50	0.90	12.47	16.35	21.37
4.75	0.94	13.81	18.17	23.78
5.00	0.99	15.21	20.09	26.33
5.25	1.04	16.68	22.10	29.00
5.50	1.09	18.21	24.21	31.80
5.75	1.14	19.81	26.41	34.72
6.00	1.19	21.48	28.71	37.78
6.25	1.24	23.21	31.10	40.97
6.50	1.29	25.01	33.59	44.28
6.75	1.34	26.87	36.18	47.73
7.00	1.39	28.80	38.86	51.30
7.25	1.44	30.80	41.64	55.01
7.50	1.49	32.86	44.51	58.84
7.75	1.54	34.98	47.48	62.80
8.00	1.59	37.18	50.54	66.89
8.25	1.64	39.43	53.70	71.10
8.50	1.69	41.76	56.96	75.45
8.75	1.74	44.15	60.31	79.93
9.00	1.79	46.60	63.76	84.53
9.25	1.84	49.12	67.30	89.27

Q [1/s]	DN 80			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
9.50	1.89	51.71	70.94	94.13
9.75	1.94	54.36	74.67	99.12
10.00	1.99	57.07	78.50	104.2
10.25	2.04	59.86	82.43	109.5
10.50	2.09	62.71	86.45	114.9
10.75	2.14	65.62	90.57	120.4
11.00	2.19	68.60	94.78	126.0
11.50	2.29	74.75	103.5	137.7
12.00	2.39	81.17	112.6	149.9
12.50	2.49	87.85	122.1	162.5
13.00	2.59	94.79	131.9	175.8
13.50	2.69	102.0	142.2	189.5
14.00	2.79	109.5	152.8	203.7
14.50	2.88	117.2	163.8	218.5
15.00	2.98	125.2	175.2	233.7
15.50	3.08	133.4	187.0	249.5
16.00	3.18	141.9	199.1	265.8
16.50	3.28	150.7	211.7	282.6
17.00	3.38	159.7	224.6	300.0
17.50	3.48	169.0	237.9	317.8
18.00	3.58	178.6	251.6	336.2
18.50	3.68	188.4	265.6	355.1
19.00	3.78	198.5	280.1	374.5
19.50	3.88	208.8	294.9	394.4
20.00	3.98	219.4	310.2	414.8
20.50	4.08	230.3	325.8	435.8
21.00	4.18	241.4	341.7	457.2
21.50	4.28	252.8	358.1	479.2
22.00	4.38	264.5	374.9	
22.50	4.48	276.4	392.0	
23.00	4.58	288.6	409.5	
23.50	4.68	301.0	427.4	
24.00	4.77	313.7	445.7	
24.50	4.87	326.6	464.3	
25.00	4.97	339.9	483.4	
25.50	5.07	353.3		
26.00	5.17	367.1		
26.50	5.27	381.1		

Q [1/s]	DN 100			
	$v[\mathrm{~m} / \mathrm{s}]$	$\begin{gathered} \mathrm{k}_{1}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{1}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
0.60	0.08	0.110	0.120	0.137
0.70	0.09	0.144	0.158	0.183
0.80	0.10	0.182	0.201	0.235
0.90	0.11	0.224	0.249	0.293
1.00	0.13	0.269	0.302	0.357
1.25	0.16	0.400	0.456	0.546
1.50	0.19	0.554	0.639	0.774
1.75	0.22	0.730	0.852	1.041
2.00	0.25	0.929	1.095	1.347
2.25	0.29	1.149	1.367	1.693
2.50	0.32	1.392	1.669	2.077
2.75	0.35	1.656	2.000	2.501
3.00	0.38	1.941	2.361	2.964
3.25	0.41	2.247	2.751	3.466
3.50	0.45	2.575	3.171	4.007
3.75	0.48	2.924	3.620	4.587
4.00	0.51	3.294	4.099	5.207
4.25	0.54	3.684	4.607	5.865
4.50	0.57	4.096	5.144	6.563
4.75	0.60	4.528	5.710	7.300
5.00	0.64	4.982	6.306	8.076
5.25	0.67	5.456	6.932	8.891
5.50	0.70	5.950	7.587	9.745
5.75	0.73	6.466	8.271	10.64
6.00	0.76	7.002	8.984	11.57
6.25	0.80	7.558	9.727	12.54
6.50	0.83	8.136	10.50	13.55
6.75	0.86	8.733	11.30	14.60
7.00	0.89	9.352	12.13	15.69
7.25	0.92	9.991	12.99	16.82
7.50	0.95	10.65	13.88	17.99
7.75	0.99	11.33	14.80	19.19
8.00	1.02	12.03	15.75	20.44
8.25	1.05	12.75	16.73	21.72
8.50	1.08	13.49	17.73	23.05
8.75	1.11	14.25	18.77	24.41
9.00	1.15	15.04	19.84	25.81
9.25	1.18	15.84	20.93	27.25
9.50	1.21	16.66	22.05	28.73

Q [1/s]	DN 100			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
9.75	1.24	17.51	23.21	30.25
10.00	1.27	18.37	24.39	31.81
10.25	1.31	19.26	25.60	33.41
10.50	1.34	20.16	26.85	35.05
10.75	1.37	21.09	28.12	36.72
11.00	1.40	22.03	29.42	38.44
11.50	1.46	23.98	32.11	41.98
12.00	1.53	26.02	34.91	45.69
12.50	1.59	28.13	37.84	49.55
13.00	1.66	30.33	40.88	53.57
13.50	1.72	32.61	44.03	57.74
14.00	1.78	34.97	47.31	62.07
14.50	1.85	37.41	50.70	66.55
15.00	1.91	39.93	54.21	71.20
15.50	1.97	42.53	57.84	76.00
16.00	2.04	45.22	61.59	80.95
16.50	2.10	47.99	65.45	86.07
17.00	2.16	50.83	69.43	91.33
17.50	2.23	53.76	73.52	96.76
18.00	2.29	56.77	77.74	102.3
18.50	2.36	59.86	82.07	108.1
19.00	2.42	63.04	86.52	114.0
19.50	2.48	66.29	91.09	120.0
20.00	2.55	69.63	95.77	126.2
20.50	2.61	73.04	100.6	132.6
21.00	2.67	76.54	105.5	139.1
21.50	2.74	80.12	110.5	145.8
22.00	2.80	83.78	115.7	152.6
22.50	2.86	87.52	120.9	159.6
23.00	2.93	91.34	126.3	166.8
23.50	2.99	95.24	131.8	174.1
24.00	3.06	99.23	137.5	181.5
24.50	3.12	103.3	143.2	189.1
25.00	3.18	107.4	149.1	196.9
25.50	3.25	111.7	155.0	204.9
26.00	3.31	116.0	161.1	212.9
26.50	3.37	120.4	167.3	221.2
27.00	3.44	124.8	173.7	229.6

Pressure loss table for DN 125

Q [1/s]	DN 125			
	$v[\mathrm{~m} / \mathrm{s}]$	$\begin{gathered} k_{1}=0.1 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{i}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
1.00	0.08	0.090	0.098	0.112
1.25	0.10	0.134	0.147	0.170
1.50	0.12	0.184	0.205	0.240
1.75	0.14	0.242	0.272	0.321
2.00	0.16	0.307	0.348	0.414
2.25	0.18	0.379	0.433	0.518
2.50	0.20	0.458	0.527	0.635
2.75	0.22	0.544	0.630	0.762
3.00	0.24	0.636	0.742	0.902
3.25	0.26	0.736	0.862	1.053
3.50	0.28	0.841	0.992	1.216
3.75	0.30	0.954	1.130	1.390
4.00	0.32	1.073	1.277	1.576
4.25	0.34	1.198	1.433	1.773
4.50	0.36	1.330	1.598	1.983
4.75	0.38	1.468	1.772	2.203
5.00	0.40	1.613	1.954	2.436
5.25	0.42	1.765	2.146	2.680
5.50	0.44	1.922	2.346	2.935
5.75	0.46	2.086	2.555	3.203
6.00	0.48	2.257	2.772	3.481
6.25	0.50	2.434	2.999	3.772
6.50	0.52	2.617	3.234	4.074
6.75	0.54	2.806	3.479	4.387
7.00	0.56	3.002	3.732	4.713
7.25	0.59	3.204	3.993	5.049
7.50	0.61	3.413	4.264	5.398
7.75	0.63	3.628	4.543	5.758
8.00	0.65	3.849	4.831	6.130
8.25	0.67	4.076	5.128	6.513
8.50	0.69	4.310	5.434	6.908
8.75	0.71	4.550	5.749	7.314
9.00	0.73	4.796	6.072	7.732
9.25	0.75	5.048	6.404	8.162
9.50	0.77	5.307	6.745	8.603
9.75	0.79	5.572	7.095	9.056
10.00	0.81	5.843	7.454	9.521
10.50	0.85	6.404	8.197	10.48
11.00	0.89	6.990	8.976	11.49

Q [1/s]	DN 125			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
11.50	0.93	7.601	9.790	12.55
12.00	0.97	8.237	10.64	13.65
12.50	1.01	8.897	11.52	14.80
13.00	1.05	9.583	12.44	16.00
13.50	1.09	10.29	13.40	17.24
14.00	1.13	11.03	14.39	18.53
14.50	1.17	11.79	15.41	19.87
15.00	1.21	12.57	16.47	21.25
15.50	1.25	13.38	17.57	22.68
16.00	1.29	14.22	18.70	24.15
16.50	1.33	15.07	19.86	25.67
17.00	1.37	15.96	21.06	27.24
17.50	1.41	16.87	22.30	28.85
18.00	1.45	17.80	23.57	30.51
18.50	1.49	18.76	24.88	32.22
19.00	1.53	19.74	26.22	33.97
19.50	1.57	20.75	27.59	35.77
20.00	1.61	21.78	29.01	37.62
20.50	1.65	22.83	30.45	39.51
21.00	1.69	23.91	31.93	41.45
21.50	1.74	25.02	33.45	43.44
22.00	1.78	26.15	35.00	45.47
22.50	1.82	27.31	36.59	47.54
23.00	1.86	28.49	38.21	49.67
23.50	1.90	29.69	39.87	51.84
24.00	1.94	30.92	41.56	54.06
24.50	1.98	32.17	43.29	56.32
25.00	2.02	33.45	45.06	58.63
25.50	2.06	34.75	46.85	60.99
26.00	2.10	36.08	48.69	63.39
26.50	2.14	37.43	50.56	65.84
27.00	2.18	38.81	52.46	68.34
27.50	2.22	40.21	54.40	70.88
28.00	2.26	41.64	56.37	73.47
28.50	2.30	43.09	58.38	76.10
29.00	2.34	44.56	60.43	78.78
29.50	2.38	46.06	62.51	81.51
30.00	2.42	47.59	64.62	84.29
30.50	2.46	49.13	66.77	87.11

Q [$1 / \mathrm{s}$]	DN 125			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\mathrm{k}_{\mathrm{i}}=1.0$ J [m/km]
31.00	2.50	50.71	68.96	89.97
31.50	2.54	52.31	71.18	92.89
32.00	2.58	53.93	73.43	95.85
32.50	2.62	55.58	75.72	98.85
33.00	2.66	57.25	78.05	101.9
33.50	2.70	58.94	80.41	105.0
34.00	2.74	60.67	82.81	108.2
34.50	2.78	62.41	85.24	111.3
35.00	2.82	64.18	87.70	114.6
35.50	2.87	65.98	90.21	117.9
36.00	2.91	67.80	92.74	121.2
36.50	2.95	69.64	95.31	124.6
37.00	2.99	71.51	97.92	128.0
37.50	3.03	73.40	100.6	131.5
38.00	3.07	75.32	103.2	135.0
38.50	3.11	77.26	106.0	138.6
39.00	3.15	79.23	108.7	142.2
39.50	3.19	81.22	111.5	145.8
40.00	3.23	83.24	114.3	149.5
40.50	3.27	85.28	117.2	153.3
41.00	3.31	87.34	120.0	157.1
41.50	3.35	89.43	123.0	160.9
42.00	3.39	91.55	125.9	164.8
42.50	3.43	93.69	128.9	168.7
43.00	3.47	95.85	131.9	172.7
43.50	3.51	98.04	135.0	176.7
44.00	3.55	100.3	138.1	180.8
44.50	3.59	102.5	141.2	184.9
45.00	3.63	104.8	144.4	189.1
45.50	3.67	107.0	147.6	193.3
46.00	3.71	109.3	150.9	197.6
46.50	3.75	111.7	154.1	201.9
47.00	3.79	114.0	157.4	206.2
47.50	3.83	116.4	160.8	210.6
48.00	3.87	118.8	164.2	215.1
48.50	3.91	121.3	167.6	219.6
49.00	3.95	123.7	171.0	224.1
49.50	4.00	126.2	174.5	228.7

Q [1/s]	DN 150			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
1.50	0.08	0.076	0.083	0.094
1.75	0.10	0.100	0.109	0.125
2.00	0.11	0.127	0.139	0.161
2.25	0.13	0.156	0.173	0.201
2.50	0.14	0.188	0.210	0.246
2.75	0.15	0.223	0.250	0.295
3.00	0.17	0.260	0.294	0.348
3.25	0.18	0.301	0.341	0.406
3.50	0.20	0.343	0.392	0.468
3.75	0.21	0.389	0.446	0.534
4.00	0.22	0.437	0.503	0.605
4.25	0.24	0.487	0.564	0.680
4.50	0.25	0.540	0.628	0.760
4.75	0.27	0.596	0.695	0.843
5.00	0.28	0.654	0.766	0.932
5.25	0.29	0.715	0.840	1.024
5.50	0.31	0.778	0.917	1.121
5.75	0.32	0.844	0.998	1.222
6.00	0.34	0.912	1.082	1.328
6.25	0.35	0.983	1.170	1.438
6.50	0.36	1.056	1.260	1.552
6.75	0.38	1.131	1.355	1.671
7.00	0.39	1.209	1.452	1.794
7.25	0.40	1.290	1.553	1.922
7.50	0.42	1.373	1.657	2.053
7.75	0.43	1.458	1.764	2.190
8.00	0.45	1.546	1.875	2.330
8.25	0.46	1.637	1.989	2.475
8.50	0.47	1.729	2.107	2.624
8.75	0.49	1.824	2.228	2.778
9.00	0.50	1.922	2.352	2.936
9.25	0.52	2.022	2.479	3.098
9.50	0.53	2.125	2.610	3.265
9.75	0.54	2.229	2.744	3.436
10.00	0.56	2.337	2.882	3.611
10.50	0.59	2.559	3.166	3.975
11.00	0.61	2.790	3.465	4.356
11.50	0.64	3.031	3.776	4.755
12.00	0.67	3.282	4.101	5.171

Q [1/s]	DN 150			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
12.50	0.70	3.542	4.439	5.604
13.00	0.73	3.812	4.791	6.055
13.50	0.75	4.091	5.155	6.523
14.00	0.78	4.380	5.533	7.009
14.50	0.81	4.678	5.925	7.512
15.00	0.84	4.986	6.329	8.033
15.50	0.87	5.303	6.747	8.571
16.00	0.89	5.630	7.179	9.126
16.50	0.92	5.967	7.623	9.699
17.00	0.95	6.313	8.081	10.29
17.50	0.98	6.668	8.552	10.90
18.00	1.01	7.033	9.037	11.52
18.50	1.03	7.407	9.535	12.17
19.00	1.06	7.791	10.05	12.83
19.50	1.09	8.184	10.57	13.50
20.00	1.12	8.587	11.11	14.20
20.50	1.14	8.999	11.66	14.91
21.00	1.17	9.421	12.22	15.64
21.50	1.20	9.852	12.80	16.39
22.00	1.23	10.29	13.39	17.15
22.50	1.26	10.74	14.00	17.93
23.00	1.28	11.20	14.61	18.73
23.50	1.31	11.67	15.24	19.55
24.00	1.34	12.15	15.89	20.38
24.50	1.37	12.64	16.55	21.24
25.00	1.40	13.13	17.22	22.10
25.50	1.42	13.64	17.90	22.99
26.00	1.45	14.16	18.60	23.89
26.50	1.48	14.68	19.31	24.82
27.00	1.51	15.22	20.03	25.75
27.50	1.54	15.76	20.77	26.71
28.00	1.56	16.31	21.52	27.68
28.50	1.59	16.88	22.28	28.68
29.00	1.62	17.45	23.06	29.68
29.50	1.65	18.03	23.85	30.71
30.00	1.68	18.62	24.65	31.75
30.50	1.70	19.22	25.47	32.81
31.00	1.73	19.83	26.30	33.89
31.50	1.76	20.45	27.14	34.99

Q [1/s]	DN 150			
	v [m/s]	$\begin{gathered} \mathrm{k}_{1}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{i}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
32.00	1.79	21.08	28.00	36.10
32.50	1.81	21.72	28.87	37.23
33.00	1.84	22.37	29.75	38.38
33.50	1.87	23.02	30.65	39.54
34.00	1.90	23.69	31.56	40.73
34.50	1.93	24.37	32.49	41.93
35.00	1.95	25.05	33.42	43.15
35.50	1.98	25.75	34.37	44.38
36.00	2.01	26.45	35.33	45.63
36.50	2.04	27.16	36.31	46.90
37.00	2.07	27.89	37.30	48.19
37.50	2.09	28.62	38.30	49.49
38.00	2.12	29.36	39.32	50.82
38.50	2.15	30.11	40.35	52.16
39.00	2.18	30.87	41.39	53.51
39.50	2.21	31.64	42.45	54.89
40.00	2.23	32.42	43.52	56.28
40.50	2.26	33.21	44.60	57.69
41.00	2.29	34.01	45.70	59.12
41.50	2.32	34.82	46.81	60.56
42.00	2.35	35.63	47.93	62.02
42.50	2.37	36.46	49.07	63.50
43.00	2.40	37.29	50.22	65.00
43.50	2.43	38.14	51.38	66.51
44.00	2.46	38.99	52.55	68.04
44.50	2.48	39.86	53.74	69.59
45.00	2.51	40.73	54.95	71.16
45.50	2.54	41.61	56.16	72.74
46.00	2.57	42.50	57.39	74.34
46.50	2.60	43.40	58.63	75.96
47.00	2.62	44.31	59.89	77.59
47.50	2.65	45.23	61.16	79.25
48.00	2.68	46.16	62.44	80.92
48.50	2.71	47.10	63.74	82.61
49.00	2.74	48.05	65.04	84.31
49.50	2.76	49.01	66.37	86.03
50.00	2.79	49.98	67.70	87.78
51.00	2.85	51.94	70.41	91.31

Q [1/s]	DN 200			
	v [m/s]	$\begin{gathered} k_{i}=0.1 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
2.50	0.08	0.045	0.048	0.054
3.00	0.09	0.062	0.067	0.076
3.50	0.11	0.081	0.089	0.102
4.00	0.12	0.103	0.114	0.131
4.50	0.14	0.127	0.141	0.164
5.00	0.15	0.154	0.172	0.200
5.50	0.17	0.183	0.205	0.240
6.00	0.18	0.214	0.241	0.284
6.50	0.20	0.247	0.280	0.331
7.00	0.22	0.282	0.321	0.382
7.50	0.23	0.319	0.366	0.436
8.00	0.25	0.359	0.413	0.494
8.50	0.26	0.401	0.463	0.556
9.00	0.28	0.445	0.516	0.621
10.00	0.31	0.539	0.630	0.762
11.00	0.34	0.642	0.755	0.917
12.00	0.37	0.753	0.892	1.087
13.00	0.40	0.872	1.039	1.271
14.00	0.43	1.000	1.197	1.470
15.00	0.46	1.136	1.367	1.682
16.00	0.49	1.280	1.548	1.909
17.00	0.52	1.432	1.740	2.151
18.00	0.55	1.593	1.942	2.407
19.00	0.58	1.762	2.156	2.677
20.00	0.62	1.938	2.381	2.961
21.00	0.65	2.123	2.618	3.260
22.00	0.68	2.316	2.865	3.573
23.00	0.71	2.517	3.123	3.901
24.00	0.74	2.726	3.392	4.242
25.00	0.77	2.943	3.673	4.598
26.00	0.80	3.168	3.964	4.969
27.00	0.83	3.402	4.267	5.354
28.00	0.86	3.643	4.581	5.753
29.00	0.89	3.892	4.905	6.166
30.00	0.92	4.149	5.241	6.594
31.00	0.95	4.414	5.588	7.036
32.00	0.98	4.688	5.946	7.493
33.00	1.02	4.969	6.315	7.964
34.00	1.05	5.258	6.695	8.449

Q [1/s]	DN 200			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
35.00	1.08	5.555	7.086	8.948
36.00	1.11	5.860	7.488	9.462
37.00	1.14	6.174	7.901	9.990
38.00	1.17	6.495	8.326	10.53
39.00	1.20	6.824	8.761	11.09
40.00	1.23	7.161	9.208	11.66
41.00	1.26	7.506	9.665	12.25
42.00	1.29	7.859	10.13	12.85
43.00	1.32	8.219	10.61	13.46
44.00	1.35	8.588	11.10	14.09
45.00	1.38	8.965	11.61	14.73
46.00	1.42	9.350	12.12	15.39
47.00	1.45	9.742	12.64	16.06
48.00	1.48	10.14	13.18	16.75
49.00	1.51	10.55	13.72	17.45
50.00	1.54	10.97	14.28	18.16
52.50	1.62	12.04	15.72	20.01
55.00	1.69	13.17	17.23	21.95
57.50	1.77	14.34	18.81	23.98
60.00	1.85	15.57	20.46	26.09
62.50	1.92	16.84	22.18	28.30
65.00	2.00	18.17	23.97	30.60
70.00	2.15	20.96	27.75	35.46
75.00	2.31	23.96	31.80	40.68
80.00	2.46	27.15	36.14	46.26
85.00	2.62	30.54	40.75	52.20
90.00	2.77	34.12	45.64	58.49
95.00	2.92	37.91	50.80	65.15
100.00	3.08	41.89	56.24	72.16
105.00	3.23	46.07	61.96	79.53
110.00	3.39	50.44	67.95	87.26
115.00	3.54	55.02	74.23	95.35
120.00	3.69	59.79	80.77	103.8
125.00	3.85	64.76	87.60	112.6
130.00	4.00	69.93	94.70	121.8
135.00	4.15	75.29	102.1	131.3
140.00	4.31	80.85	109.7	141.2
145.00	4.46	86.61	117.7	151.4

Q [1/s]	DN 250			
	v [m/s]	$\begin{gathered} k_{i}=0.1 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
4.00	0.08	0.035	0.038	0.042
4.50	0.09	0.043	0.047	0.053
5.00	0.10	0.052	0.057	0.064
5.50	0.11	0.062	0.068	0.077
6.00	0.12	0.072	0.079	0.090
6.50	0.13	0.084	0.092	0.105
7.00	0.14	0.095	0.105	0.121
7.50	0.15	0.108	0.120	0.138
8.00	0.16	0.121	0.135	0.156
8.50	0.17	0.135	0.151	0.176
9.00	0.18	0.150	0.168	0.196
10.00	0.20	0.181	0.204	0.240
11.00	0.22	0.215	0.244	0.288
12.00	0.24	0.252	0.288	0.341
13.00	0.26	0.292	0.334	0.398
14.00	0.28	0.334	0.385	0.459
15.00	0.30	0.379	0.438	0.525
16.00	0.31	0.426	0.496	0.596
17.00	0.33	0.476	0.556	0.670
18.00	0.35	0.529	0.620	0.749
19.00	0.37	0.584	0.688	0.833
20.00	0.39	0.642	0.758	0.920
21.00	0.41	0.702	0.833	1.013
22.00	0.43	0.765	0.910	1.109
23.00	0.45	0.831	0.992	1.210
24.00	0.47	0.899	1.076	1.315
25.00	0.49	0.970	1.164	1.425
26.00	0.51	1.043	1.256	1.539
27.00	0.53	1.119	1.350	1.658
28.00	0.55	1.197	1.449	1.781
29.00	0.57	1.278	1.550	1.908
30.00	0.59	1.361	1.655	2.039
31.00	0.61	1.447	1.764	2.176
32.00	0.63	1.536	1.876	2.316
33.00	0.65	1.627	1.991	2.461
34.00	0.67	1.720	2.110	2.610
35.00	0.69	1.816	2.232	2.763
36.00	0.71	1.915	2.357	2.921
37.00	0.73	2.016	2.486	3.084

Q [1/s]	DN 250			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
38.00	0.75	2.119	2.619	3.250
39.00	0.77	2.225	2.754	3.421
40.00	0.79	2.334	2.894	3.597
41.00	0.81	2.445	3.036	3.777
42.00	0.83	2.558	3.182	3.961
43.00	0.85	2.674	3.332	4.150
44.00	0.87	2.792	3.484	4.343
45.00	0.89	2.913	3.641	4.540
46.00	0.90	3.037	3.800	4.742
47.00	0.92	3.163	3.963	4.948
48.00	0.94	3.291	4.130	5.158
49.00	0.96	3.422	4.300	5.373
50.00	0.98	3.556	4.473	5.592
52.50	1.03	3.900	4.921	6.160
55.00	1.08	4.260	5.391	6.755
57.50	1.13	4.635	5.882	7.377
60.00	1.18	5.026	6.394	8.026
62.50	1.23	5.433	6.927	8.703
65.00	1.28	5.854	7.482	9.408
70.00	1.38	6.745	8.655	10.90
75.00	1.48	7.696	9.914	12.50
80.00	1.57	8.710	11.26	14.21
85.00	1.67	9.785	12.69	16.03
90.00	1.77	10.92	14.20	17.96
95.00	1.87	12.12	15.80	20.00
100.00	1.97	13.38	17.49	22.14
105.00	2.07	14.70	19.26	24.40
110.00	2.16	16.09	21.11	26.77
115.00	2.26	17.53	23.05	29.25
120.00	2.36	19.04	25.08	31.83
125.00	2.46	20.60	27.19	34.53
130.00	2.56	22.23	29.39	37.33
135.00	2.66	23.92	31.67	40.25
140.00	2.75	25.68	34.03	43.27
145.00	2.85	27.49	36.49	46.41
150.00	2.95	29.36	39.02	49.65
155.00	3.05	31.30	41.65	53.01
160.00	3.15	33.30	44.35	56.47

Q [1/s]	DN 300			
	$v[\mathrm{~m} / \mathrm{s}]$	$\begin{gathered} \mathrm{k}_{1}=0.1 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{i}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{i}=1.0 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$
6.00	0.08	0.030	0.032	0.036
7.00	0.10	0.039	0.043	0.048
8.00	0.11	0.050	0.054	0.061
9.00	0.12	0.062	0.067	0.077
10.00	0.14	0.075	0.082	0.094
11.00	0.15	0.089	0.098	0.113
12.00	0.16	0.104	0.115	0.133
13.00	0.18	0.120	0.133	0.155
14.00	0.19	0.137	0.153	0.179
15.00	0.20	0.155	0.174	0.204
16.00	0.22	0.174	0.197	0.231
17.00	0.23	0.194	0.220	0.260
18.00	0.25	0.216	0.246	0.290
19.00	0.26	0.238	0.272	0.322
20.00	0.27	0.261	0.300	0.356
22.00	0.30	0.311	0.359	0.428
24.00	0.33	0.365	0.424	0.507
26.00	0.35	0.423	0.493	0.593
28.00	0.38	0.485	0.568	0.685
30.00	0.41	0.551	0.649	0.784
32.00	0.44	0.620	0.734	0.889
34.00	0.46	0.694	0.825	1.002
36.00	0.49	0.772	0.921	1.121
38.00	0.52	0.853	1.022	1.246
40.00	0.55	0.939	1.128	1.378
42.00	0.57	1.028	1.240	1.517
44.00	0.60	1.121	1.357	1.663
46.00	0.63	1.218	1.479	1.815
48.00	0.65	1.319	1.606	1.974
50.00	0.68	1.424	1.738	2.139
52.50	0.72	1.561	1.911	2.355
55.00	0.75	1.703	2.092	2.582
57.50	0.78	1.852	2.281	2.819
60.00	0.82	2.006	2.479	3.066
62.50	0.85	2.167	2.684	3.324
65.00	0.89	2.333	2.898	3.592
70.00	0.95	2.684	3.349	4.159
75.00	1.02	3.059	3.833	4.768
80.00	1.09	3.458	4.350	5.418

Q [1/s]	DN 300			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
85	1.16	3.880	4.899	6.110
90	1.23	4.327	5.481	6.844
95	1.30	4.797	6.095	7.619
100	1.36	5.291	6.741	8.435
105	1.43	5.808	7.421	9.294
110	1.50	6.350	8.132	10.19
115	1.57	6.915	8.877	11.13
120	1.64	7.504	9.654	12.12
125	1.70	8.116	10.46	13.14
130	1.77	8.752	11.30	14.21
135	1.84	9.412	12.18	15.31
140	1.91	10.10	13.09	16.46
145	1.98	10.80	14.03	17.65
150	2.05	11.53	15.00	18.89
155	2.11	12.29	16.00	20.16
160	2.18	13.07	17.04	21.48
165	2.25	13.87	18.11	22.83
170	2.32	14.69	19.21	24.23
175	2.39	15.54	20.34	25.67
180	2.45	16.41	21.51	27.15
185	2.52	17.31	22.71	28.67
190	2.59	18.23	23.94	30.24
195	2.66	19.17	25.21	31.84
200	2.73	20.14	26.51	33.49
205	2.79	21.13	27.84	35.18
210	2.86	22.15	29.20	36.91
215	2.93	23.18	30.59	38.68
220	3.00	24.25	32.02	40.50
225	3.07	25.33	33.48	42.35
230	3.14	26.44	34.97	44.25
235	3.20	27.57	36.50	46.19
240	3.27	28.73	38.05	48.17
245	3.34	29.91	39.64	50.19
250	3.41	31.11	41.27	52.25
255	3.48	32.34	42.92	54.36
260	3.54	33.59	44.61	56.50
265	3.61	34.86	46.33	58.69
270	3.68	36.16	48.08	60.92

Q [1/s]	DN 400			
	$v[\mathrm{~m} / \mathrm{s}]$	$\begin{gathered} \mathrm{k}_{1}=0.1 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{i}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
9.00	0.07	0.016	0.017	0.019
10.00	0.08	0.020	0.021	0.023
12.50	0.10	0.029	0.032	0.035
15.00	0.12	0.041	0.044	0.050
17.50	0.14	0.054	0.059	0.067
20.00	0.16	0.068	0.075	0.086
25.00	0.20	0.102	0.114	0.132
30.00	0.24	0.142	0.161	0.188
35.00	0.27	0.189	0.215	0.253
40.00	0.31	0.241	0.277	0.328
45.00	0.35	0.300	0.347	0.413
50.00	0.39	0.364	0.424	0.508
55.00	0.43	0.434	0.509	0.612
60.00	0.47	0.510	0.602	0.726
65.00	0.51	0.592	0.703	0.849
70.00	0.55	0.679	0.811	0.982
75.00	0.59	0.773	0.926	1.125
80.00	0.63	0.872	1.050	1.277
85.00	0.67	0.977	1.181	1.440
90.00	0.71	1.088	1.319	1.611
95.00	0.75	1.204	1.466	1.793
100.00	0.78	1.326	1.620	1.984
105.00	0.82	1.454	1.781	2.185
110.00	0.86	1.587	1.950	2.395
115.00	0.90	1.726	2.127	2.615
120.00	0.94	1.871	2.312	2.845
125.00	0.98	2.022	2.504	3.085
130.00	1.02	2.178	2.704	3.334
135.00	1.06	2.339	2.911	3.593
140.00	1.10	2.507	3.126	3.861
145.00	1.14	2.680	3.349	4.140
150.00	1.18	2.859	3.579	4.427
155.00	1.22	3.043	3.817	4.725
160.00	1.26	3.233	4.063	5.032
165.00	1.29	3.429	4.316	5.349
170.00	1.33	3.630	4.577	5.675
175.00	1.37	3.837	4.846	6.012
180.00	1.41	4.050	5.122	6.358
185.00	1.45	4.268	5.406	6.713

Q [1/s]	DN 400			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
190	1.49	4.492	5.697	7.078
195	1.53	4.721	5.996	7.453
200	1.57	4.956	6.303	7.838
205	1.61	5.197	6.617	8.232
210	1.65	5.443	6.939	8.636
215	1.69	5.695	7.269	9.049
220	1.73	5.953	7.606	9.473
225	1.77	6.216	7.951	9.905
230	1.80	6.484	8.303	10.35
235	1.84	6.759	8.664	10.80
240	1.88	7.039	9.031	11.26
245	1.92	7.324	9.407	11.73
250	1.96	7.616	9.790	12.21
260	2.04	8.215	10.58	13.21
270	2.12	8.837	11.40	14.24
280	2.20	9.481	12.25	15.31
290	2.28	10.15	13.13	16.41
300	2.35	10.84	14.04	17.56
310	2.43	11.55	14.98	18.74
320	2.51	12.28	15.95	19.97
330	2.59	13.04	16.96	21.23
340	2.67	13.82	17.99	22.53
350	2.75	14.62	19.05	23.87
360	2.83	15.44	20.15	25.25
370	2.90	16.29	21.27	26.67
380	2.98	17.15	22.43	28.12
390	3.06	18.05	23.62	29.62
400	3.14	18.96	24.83	31.15
410	3.22	19.89	26.08	32.72
420	3.30	20.85	27.36	34.33
430	3.37	21.83	28.67	35.98
440	3.45	22.83	30.00	37.67
450	3.53	23.86	31.37	39.39
460	3.61	24.91	32.77	41.16
470	3.69	25.98	34.20	42.96
480	3.77	27.07	35.67	44.80
490	3.85	28.18	37.16	46.69
500	3.92	29.32	38.68	48.61

Q [1/s]	DN 500			
	$v[\mathrm{~m} / \mathrm{s}]$	$\begin{gathered} \mathrm{k}_{1}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{i}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
15.00	0.08	0.014	0.015	0.016
17.50	0.09	0.018	0.019	0.022
20.00	0.10	0.023	0.025	0.028
25.00	0.13	0.035	0.037	0.042
30.00	0.15	0.048	0.052	0.060
35.00	0.18	0.063	0.070	0.080
40.00	0.20	0.081	0.090	0.104
45.00	0.23	0.100	0.112	0.130
50.00	0.25	0.121	0.137	0.160
55.00	0.28	0.145	0.164	0.192
60.00	0.30	0.170	0.193	0.227
65.00	0.33	0.197	0.225	0.266
70.00	0.35	0.225	0.259	0.307
75.00	0.38	0.256	0.296	0.351
80.00	0.40	0.288	0.335	0.398
85.00	0.43	0.323	0.376	0.449
90.00	0.45	0.359	0.420	0.502
95.00	0.48	0.397	0.466	0.558
100.00	0.50	0.436	0.514	0.617
105.00	0.53	0.478	0.565	0.679
110.00	0.55	0.521	0.618	0.744
115.00	0.58	0.566	0.674	0.812
120.00	0.60	0.613	0.732	0.883
125.00	0.63	0.662	0.792	0.957
130.00	0.65	0.713	0.854	1.034
135.00	0.68	0.765	0.919	1.114
140.00	0.70	0.819	0.987	1.197
145.00	0.73	0.875	1.056	1.283
150.00	0.75	0.932	1.128	1.372
155.00	0.78	0.992	1.203	1.463
160.00	0.80	1.053	1.280	1.558
165.00	0.83	1.116	1.359	1.656
170.00	0.85	1.181	1.440	1.757
175.00	0.88	1.247	1.524	1.860
180.00	0.90	1.316	1.610	1.967
185.00	0.93	1.386	1.699	2.076
190.00	0.95	1.457	1.790	2.189
195.00	0.98	1.531	1.883	2.304
200.00	1.00	1.606	1.979	2.423

Q [1/s]	DN 500			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
205	1.03	1.683	2.077	2.544
210	1.05	1.762	2.177	2.669
215	1.08	1.843	2.280	2.796
220	1.10	1.925	2.385	2.927
225	1.13	2.009	2.492	3.060
230	1.15	2.095	2.602	3.196
235	1.18	2.183	2.714	3.335
240	1.20	2.272	2.829	3.478
245	1.23	2.364	2.946	3.623
250	1.25	2.457	3.065	3.771
260	1.30	2.648	3.311	4.076
270	1.35	2.846	3.566	4.393
280	1.40	3.051	3.830	4.722
290	1.45	3.263	4.104	5.063
300	1.50	3.482	4.387	5.416
310	1.55	3.709	4.680	5.780
320	1.60	3.942	4.982	6.157
330	1.65	4.182	5.294	6.545
340	1.70	4.429	5.615	6.945
350	1.75	4.683	5.945	7.358
360	1.80	4.945	6.285	7.782
370	1.85	5.213	6.635	8.217
380	1.90	5.488	6.994	8.665
390	1.95	5.770	7.362	9.125
400	2.00	6.059	7.740	9.596
410	2.06	6.355	8.127	10.08
420	2.11	6.659	8.523	10.57
430	2.16	6.969	8.929	11.08
440	2.21	7.286	9.345	11.60
450	2.26	7.610	9.770	12.13
460	2.31	7.941	10.20	12.67
470	2.36	8.279	10.65	13.23
480	2.41	8.624	11.10	13.79
490	2.46	8.976	11.56	14.37
500	2.51	9.335	12.04	14.96
525	2.63	10.26	13.26	16.49
550	2.76	11.23	14.54	18.09
575	2.88	12.25	15.88	19.77
600	3.01	13.31	17.28	21.52

Q [$1 / \mathrm{s}$]	DN 600			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{i}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
25	0.09	0.014	0.015	0.017
30	0.10	0.020	0.021	0.024
35	0.12	0.026	0.028	0.032
40	0.14	0.033	0.036	0.041
45	0.16	0.041	0.045	0.051
50	0.17	0.050	0.055	0.063
55	0.19	0.059	0.066	0.075
60	0.21	0.069	0.077	0.089
65	0.23	0.080	0.090	0.104
70	0.24	0.092	0.103	0.120
75	0.26	0.104	0.118	0.137
80	0.28	0.118	0.133	0.155
85	0.30	0.131	0.149	0.174
90	0.31	0.146	0.166	0.195
95	0.33	0.161	0.184	0.216
100	0.35	0.177	0.203	0.239
110	0.38	0.212	0.244	0.288
120	0.42	0.249	0.288	0.342
130	0.45	0.288	0.336	0.400
140	0.49	0.331	0.388	0.462
150	0.52	0.376	0.443	0.529
160	0.56	0.425	0.501	0.601
170	0.59	0.476	0.564	0.677
180	0.63	0.529	0.630	0.758
190	0.66	0.586	0.700	0.843
200	0.70	0.645	0.773	0.933
210	0.73	0.707	0.850	1.027
220	0.76	0.772	0.930	1.126
230	0.80	0.840	1.015	1.229
240	0.83	0.910	1.102	1.337
250	0.87	0.983	1.194	1.450
260	0.90	1.059	1.289	1.567
270	0.94	1.137	1.388	1.688
280	0.97	1.218	1.490	1.814
290	1.01	1.302	1.596	1.945
300	1.04	1.389	1.705	2.080
310	1.08	1.478	1.819	2.219
320	1.11	1.570	1.935	2.363
330	1.15	1.665	2.056	2.512

Q [1/s]	DN 600			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
340	1.18	1.763	2.180	2.665
350	1.22	1.863	2.308	2.823
360	1.25	1.966	2.439	2.985
370	1.29	2.071	2.574	3.152
380	1.32	2.180	2.712	3.324
390	1.36	2.291	2.854	3.499
400	1.39	2.405	3.000	3.680
410	1.43	2.521	3.150	3.865
420	1.46	2.640	3.303	4.054
430	1.49	2.762	3.459	4.248
440	1.53	2.887	3.620	4.447
450	1.56	3.014	3.783	4.650
460	1.60	3.144	3.951	4.857
470	1.63	3.277	4.122	5.070
480	1.67	3.412	4.297	5.286
490	1.70	3.550	4.475	5.507
500	1.74	3.691	4.657	5.733
520	1.81	3.981	5.032	6.198
540	1.88	4.282	5.422	6.681
560	1.95	4.593	5.825	7.183
580	2.02	4.915	6.244	7.702
600	2.09	5.248	6.676	8.240
625	2.17	5.679	7.238	8.937
650	2.26	6.127	7.822	9.663
675	2.35	6.592	8.429	10.42
700	2.43	7.074	9.058	11.20
725	2.52	7.573	9.710	12.01
750	2.61	8.089	10.38	12.85
775	2.69	8.621	11.08	13.72
800	2.78	9.170	11.80	14.61
825	2.87	9.736	12.54	15.54
850	2.95	10.32	13.31	16.49
875	3.04	10.92	14.10	17.47
900	3.13	11.54	14.91	18.48
925	3.22	12.17	15.74	19.52
950	3.30	12.82	16.60	20.58
975	3.39	13.49	17.47	21.68
1000	3.48	14.17	18.37	22.80
1050	3.65	15.59	20.24	25.13

Q [1/s]	DN 700			
	v [m/s]	$\begin{gathered} k_{i}=0.1 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
30	0.08	0.010	0.010	0.011
35	0.09	0.013	0.013	0.015
40	0.10	0.016	0.017	0.019
45	0.12	0.020	0.021	0.024
50	0.13	0.024	0.026	0.029
55	0.14	0.028	0.031	0.035
60	0.15	0.033	0.036	0.041
65	0.17	0.038	0.042	0.048
70	0.18	0.044	0.048	0.055
75	0.19	0.050	0.055	0.063
80	0.21	0.056	0.062	0.071
85	0.22	0.063	0.070	0.080
90	0.23	0.070	0.077	0.089
95	0.24	0.077	0.086	0.099
100	0.26	0.084	0.095	0.110
110	0.28	0.101	0.113	0.132
120	0.31	0.118	0.134	0.156
130	0.33	0.137	0.156	0.182
140	0.36	0.157	0.179	0.211
150	0.38	0.178	0.205	0.241
160	0.41	0.201	0.232	0.274
170	0.44	0.225	0.260	0.308
180	0.46	0.250	0.291	0.345
190	0.49	0.277	0.323	0.383
200	0.51	0.304	0.356	0.424
210	0.54	0.333	0.391	0.467
220	0.56	0.364	0.428	0.511
230	0.59	0.395	0.467	0.558
240	0.62	0.428	0.507	0.607
250	0.64	0.462	0.549	0.658
260	0.67	0.497	0.592	0.711
270	0.69	0.534	0.637	0.766
280	0.72	0.572	0.684	0.822
290	0.74	0.611	0.732	0.881
300	0.77	0.651	0.782	0.943
310	0.80	0.693	0.834	1.006
320	0.82	0.736	0.887	1.071
330	0.85	0.780	0.942	1.138
340	0.87	0.825	0.998	1.207

Q [1/s]	DN 700			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
350	0.90	0.871	1.056	1.278
360	0.92	0.919	1.116	1.352
370	0.95	0.968	1.177	1.427
380	0.98	1.019	1.241	1.504
390	1.00	1.070	1.305	1.584
400	1.03	1.123	1.372	1.665
410	1.05	1.177	1.440	1.749
420	1.08	1.232	1.509	1.834
430	1.10	1.288	1.580	1.922
440	1.13	1.346	1.653	2.011
450	1.15	1.405	1.728	2.103
460	1.18	1.465	1.804	2.197
470	1.21	1.527	1.882	2.293
480	1.23	1.589	1.961	2.390
490	1.26	1.653	2.042	2.490
500	1.28	1.718	2.125	2.592
520	1.33	1.852	2.295	2.802
540	1.39	1.991	2.472	3.020
560	1.44	2.134	2.656	3.246
580	1.49	2.283	2.846	3.480
600	1.54	2.437	3.042	3.723
625	1.60	2.635	3.297	4.037
650	1.67	2.842	3.562	4.365
675	1.73	3.056	3.838	4.705
700	1.80	3.278	4.123	5.058
725	1.86	3.507	4.419	5.423
750	1.92	3.745	4.725	5.802
775	1.99	3.989	5.042	6.193
800	2.05	4.242	5.368	6.597
825	2.12	4.502	5.705	7.014
850	2.18	4.770	6.052	7.443
875	2.25	5.045	6.409	7.885
900	2.31	5.329	6.777	8.340
925	2.37	5.619	7.154	8.808
950	2.44	5.918	7.542	9.288
975	2.50	6.224	7.941	9.781
1000	2.57	6.538	8.349	10.29
1050	2.69	7.188	9.197	11.34
1100	2.82	7.869	10.09	12.44

Q [1/s]	DN 800			
	v [m/s]	$\begin{gathered} k_{1}=0.1 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{i}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
40	0.08	0.008	0.009	0.010
50	0.10	0.012	0.013	0.015
60	0.12	0.017	0.019	0.021
70	0.14	0.023	0.025	0.028
80	0.16	0.029	0.032	0.036
90	0.18	0.036	0.039	0.045
100	0.20	0.044	0.048	0.055
110	0.22	0.052	0.057	0.066
120	0.23	0.061	0.068	0.078
130	0.25	0.071	0.079	0.091
140	0.27	0.081	0.091	0.105
150	0.29	0.092	0.103	0.120
160	0.31	0.103	0.117	0.136
170	0.33	0.116	0.131	0.153
180	0.35	0.128	0.146	0.171
190	0.37	0.142	0.162	0.190
200	0.39	0.156	0.179	0.210
210	0.41	0.171	0.197	0.231
220	0.43	0.186	0.215	0.253
230	0.45	0.202	0.234	0.277
240	0.47	0.219	0.254	0.301
250	0.49	0.236	0.275	0.326
260	0.51	0.254	0.297	0.352
270	0.53	0.273	0.319	0.379
280	0.55	0.292	0.342	0.407
290	0.57	0.312	0.366	0.436
300	0.59	0.332	0.391	0.466
310	0.61	0.354	0.417	0.497
320	0.63	0.375	0.443	0.529
330	0.65	0.398	0.471	0.562
340	0.67	0.421	0.499	0.597
350	0.68	0.444	0.528	0.632
375	0.73	0.506	0.603	0.724
400	0.78	0.571	0.684	0.822
425	0.83	0.641	0.770	0.927
450	0.88	0.714	0.861	1.038
475	0.93	0.791	0.957	1.155
500	0.98	0.872	1.058	1.278
525	1.03	0.956	1.164	1.408

Q [1/s]	DN 800			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
550	1.08	1.045	1.275	1.544
575	1.13	1.137	1.391	1.686
600	1.17	1.233	1.512	1.835
625	1.22	1.333	1.638	1.990
650	1.27	1.437	1.770	2.151
675	1.32	1.544	1.906	2.318
700	1.37	1.656	2.047	2.491
725	1.42	1.771	2.194	2.671
750	1.47	1.890	2.345	2.857
775	1.52	2.013	2.502	3.050
800	1.57	2.139	2.663	3.248
825	1.61	2.270	2.830	3.453
850	1.66	2.404	3.001	3.664
875	1.71	2.542	3.178	3.881
900	1.76	2.684	3.359	4.105
925	1.81	2.829	3.546	4.335
950	1.86	2.979	3.738	4.571
975	1.91	3.132	3.935	4.814
1000	1.96	3.289	4.137	5.062
1050	2.05	3.614	4.555	5.578
1100	2.15	3.954	4.994	6.120
1150	2.25	4.310	5.453	6.686
1200	2.35	4.680	5.933	7.277
1250	2.45	5.066	6.432	7.893
1300	2.54	5.467	6.952	8.535
1350	2.64	5.883	7.492	9.201
1400	2.74	6.315	8.052	9.893
1450	2.84	6.761	8.632	10.61
1500	2.94	7.222	9.232	11.35
1550	3.03	7.699	9.852	12.12
1600	3.13	8.191	10.49	12.91
1650	3.23	8.698	11.15	13.73
1700	3.33	9.220	11.83	14.57
1750	3.42	9.757	12.54	15.43
1800	3.52	10.31	13.26	16.33
1850	3.62	10.88	14.00	17.24
1900	3.72	11.46	14.76	18.18
1950	3.82	12.06	15.54	19.15
2000	3.91	12.67	16.34	20.14

Q [1/s]	DN 900			
	$v[\mathrm{~m} / \mathrm{s}]$	$\begin{gathered} \mathrm{k}_{1}=0.1 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{i}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
50	0.08	0.007	0.007	0.008
60	0.09	0.010	0.010	0.011
70	0.11	0.013	0.014	0.015
80	0.12	0.016	0.018	0.020
90	0.14	0.020	0.022	0.025
100	0.15	0.025	0.027	0.030
110	0.17	0.029	0.032	0.036
120	0.19	0.034	0.038	0.043
130	0.20	0.040	0.044	0.050
140	0.22	0.045	0.050	0.057
150	0.23	0.052	0.057	0.065
160	0.25	0.058	0.065	0.074
170	0.26	0.065	0.072	0.083
180	0.28	0.072	0.081	0.093
190	0.29	0.080	0.089	0.104
200	0.31	0.087	0.099	0.114
210	0.32	0.096	0.108	0.126
220	0.34	0.104	0.118	0.138
230	0.36	0.113	0.129	0.150
240	0.37	0.123	0.140	0.163
250	0.39	0.132	0.151	0.177
260	0.40	0.142	0.163	0.191
270	0.42	0.152	0.175	0.206
280	0.43	0.163	0.188	0.221
290	0.45	0.174	0.201	0.236
300	0.46	0.185	0.214	0.253
310	0.48	0.197	0.228	0.270
320	0.49	0.209	0.243	0.287
330	0.51	0.222	0.258	0.305
340	0.53	0.234	0.273	0.323
350	0.54	0.247	0.289	0.342
375	0.58	0.281	0.330	0.392
400	0.62	0.318	0.374	0.445
425	0.66	0.356	0.421	0.501
450	0.70	0.396	0.470	0.561
475	0.73	0.439	0.522	0.624
500	0.77	0.484	0.577	0.691
525	0.81	0.530	0.634	0.761
550	0.85	0.579	0.695	0.834

Q [1/s]	DN 900			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
575	0.89	0.630	0.758	0.911
600	0.93	0.683	0.824	0.991
625	0.97	0.738	0.892	1.074
650	1.00	0.795	0.963	1.161
675	1.04	0.854	1.037	1.251
700	1.08	0.915	1.114	1.345
725	1.12	0.979	1.193	1.442
750	1.16	1.044	1.275	1.542
775	1.20	1.111	1.360	1.646
800	1.24	1.181	1.447	1.753
825	1.27	1.252	1.538	1.863
850	1.31	1.326	1.630	1.977
875	1.35	1.402	1.726	2.094
900	1.39	1.479	1.825	2.214
925	1.43	1.559	1.926	2.338
950	1.47	1.641	2.029	2.465
975	1.51	1.725	2.136	2.596
1000	1.55	1.811	2.245	2.730
1050	1.62	1.989	2.472	3.008
1100	1.70	2.175	2.709	3.299
1150	1.78	2.370	2.958	3.604
1200	1.85	2.572	3.217	3.922
1250	1.93	2.783	3.487	4.254
1300	2.01	3.003	3.768	4.600
1350	2.09	3.230	4.060	4.958
1400	2.16	3.466	4.363	5.331
1450	2.24	3.709	4.677	5.716
1500	2.32	3.961	5.001	6.115
1550	2.39	4.221	5.337	6.528
1600	2.47	4.490	5.683	6.954
1650	2.55	4.766	6.040	7.394
1700	2.63	5.051	6.409	7.847
1750	2.70	5.344	6.787	8.313
1800	2.78	5.645	7.177	8.793
1850	2.86	5.954	7.578	9.287
1900	2.94	6.272	7.990	9.794
1950	3.01	6.598	8.412	10.31
2000	3.09	6.931	8.845	10.85
2050	3.17	7.274	9.290	11.40

Q [1/s]	DN 1000			
	v [m/s]	$\begin{gathered} k_{i}=0.1 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{1}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
60	0.08	0.006	0.006	0.007
70	0.09	0.008	0.008	0.009
80	0.10	0.010	0.010	0.012
90	0.11	0.012	0.013	0.014
100	0.13	0.015	0.016	0.018
110	0.14	0.018	0.019	0.021
120	0.15	0.021	0.022	0.025
130	0.16	0.024	0.026	0.029
140	0.18	0.027	0.030	0.033
150	0.19	0.031	0.034	0.038
160	0.20	0.035	0.038	0.043
170	0.21	0.039	0.043	0.049
180	0.23	0.043	0.047	0.054
190	0.24	0.047	0.053	0.060
200	0.25	0.052	0.058	0.067
210	0.26	0.057	0.064	0.073
220	0.28	0.062	0.069	0.080
230	0.29	0.067	0.076	0.087
240	0.30	0.073	0.082	0.095
250	0.31	0.079	0.089	0.103
260	0.33	0.085	0.095	0.111
270	0.34	0.091	0.103	0.119
280	0.35	0.097	0.110	0.128
290	0.36	0.104	0.118	0.137
300	0.38	0.110	0.126	0.146
325	0.41	0.128	0.146	0.171
350	0.44	0.147	0.169	0.198
375	0.47	0.167	0.193	0.227
400	0.50	0.188	0.218	0.257
425	0.53	0.211	0.245	0.290
450	0.56	0.235	0.274	0.324
475	0.59	0.260	0.304	0.361
500	0.63	0.286	0.336	0.399
525	0.66	0.314	0.370	0.440
550	0.69	0.342	0.405	0.482
575	0.72	0.372	0.441	0.526
600	0.75	0.403	0.479	0.572
625	0.78	0.436	0.519	0.620
650	0.81	0.469	0.560	0.670

Q [1/s]	DN 1000			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{i}}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{i}=1.0 \\ J[m / k m] \end{gathered}$
675	0.84	0.504	0.603	0.722
700	0.88	0.540	0.647	0.776
725	0.91	0.577	0.693	0.832
750	0.94	0.615	0.741	0.889
775	0.97	0.655	0.790	0.949
800	1.00	0.696	0.840	1.011
825	1.03	0.738	0.893	1.074
850	1.06	0.781	0.946	1.140
875	1.09	0.825	1.002	1.207
900	1.13	0.870	1.059	1.276
925	1.16	0.917	1.117	1.348
950	1.19	0.965	1.177	1.421
1000	1.25	1.064	1.302	1.573
1050	1.31	1.169	1.433	1.733
1100	1.38	1.278	1.570	1.901
1150	1.44	1.391	1.714	2.076
1200	1.50	1.510	1.864	2.259
1250	1.56	1.633	2.020	2.450
1300	1.63	1.761	2.182	2.649
1350	1.69	1.893	2.351	2.855
1400	1.75	2.031	2.526	3.069
1450	1.81	2.173	2.707	3.291
1500	1.88	2.320	2.894	3.520
1550	1.94	2.472	3.088	3.758
1600	2.00	2.628	3.288	4.003
1650	2.06	2.789	3.494	4.255
1700	2.13	2.955	3.707	4.516
1750	2.19	3.126	3.926	4.784
1800	2.25	3.301	4.151	5.060
1850	2.31	3.481	4.382	5.344
1900	2.38	3.666	4.619	5.635
1950	2.44	3.855	4.863	5.935
2000	2.50	4.050	5.113	6.242
2050	2.56	4.249	5.370	6.556
2100	2.63	4.453	5.632	6.879
2150	2.69	4.661	5.901	7.209
2200	2.75	4.874	6.176	7.547
2250	2.81	5.092	6.458	7.892
2300	2.88	5.315	6.745	8.246

9.8 Cutting of pipes

DUKTUS

Suitability for cutting - general

Basically, centrifugally cast socket pipes up to and including DN 300 are always suitable for cutting. As from DN 350, socket pipes which are cuttable are expressly marked as such in the factory. Refer to the following two sections.
With socket pipes > DN 300 which are not identified as being cuttable, and with F and FF flanged pipes which are produced from pipe barrels (recognisable from the cement mortar lining), before cutting it is important to check whether they meet the conditions necessary for this. Cast F and FF flanged pipes (epoxy inside and outside) should not be used as cuttable pipes.
Socket pipes and flanged pipes are suitable for cutting if the outside diameter of the barrel at the point to be cut is within the permissible tolerances according to the following table:

DN	Da	$\mathrm{Da}_{\text {max }}$	$\mathrm{Da}_{\text {min }}$	$\cup_{\text {nenn }}$	$\mathrm{U}_{\text {max }}$	$\mathrm{U}_{\text {min }}$
80	$98{ }_{-2.7}^{+1}$	99	95,3	307,9	311,0	299,4
100	$118{ }_{-2.8}^{+1}$	119	115,2	370,7	373,8	361,9
125	$144{ }_{-2.8}$	145	141,2	452,4	455,5	443,6
150	$170{ }_{-19}$	171	167,1	534,1	537,2	525,0
200	$222{ }_{-30}^{+1}$	223	219,0	697,4	700,6	688,0
250	$274{ }_{-3,1}^{1}$	275	270,9	860,8	863,9	851,1
300	$326{ }_{-3,}^{+1}$	327	322,7	1.024,2	1.027,3	1.013,8
400	$429{ }_{-3}^{+1}$	430	425,5	1.347,7	1.350,9	1.336,7
500	$532{ }_{-88}^{+1}$	533	528,2	1.671,3	1.674,5	1.659,4
600	$635{ }_{-4,0}$	636	631,0	1.994,9	1.998,1	1.982,3
700	$738{ }_{-43}^{+1}$	739	733,7	2.318,5	2.321,6	2.305,0
800	$842{ }_{-4}^{+1}$	843	837,5	2.645,2	2.648,4	2.631,1
900	$945{ }_{-18}^{+1}$	946	940,2	2.968,8	2.971,9	2.953,7
1000	$1.048{ }_{\text {+ }}^{+1}$	1.049	1.043,0	3.292,4	3.295,5	3.276,7

$\mathrm{Da}=$ outside diameter; $\mathrm{U}=$ circumference
In addition the ovality at the spigot end of the pipe should not exceed the following values:

- 1 \% for DN 250 to DN 600
- 2 \% for DN 600 to DN 1000
e. g.: ovality $=100 \cdot\left(\frac{738,5-735}{738,5+735}\right)=0,24 \%$

Calculation of ovality
ovality $=100 \cdot\left(\frac{A_{1}-A_{2}}{A_{1}+A_{2}}\right)$
$A_{1}=$ longest axis in millimeter
$\mathrm{A}_{2}=$ shortest axis in millimeter

DUKTUS

Suitability for cutting (6 m pipes)

Up to and including a nominal size of DN 300, the pipes supplied can be cut, in the region of the barrel, at points more than 1 m away from the socket, to enable a spigot end for a joint to be formed. Above a nominal size of DN 300 only pipes which carry a continuous longitudinal stripe can be cut. Pipes of this kind ("Schnittrohre" or cuttable pipes) have to be ordered separately. An additional identifier for a cuttable pipe is an "SR" marked on the end-face of the socket.

Tools

The best way of cutting ductile iron pipes is with cutters using abrasive discs and powered in a variety of ways, e. g. by compressed air, electric motors or petrol engines. The cutting disc we recommend is the C 24 RT Spezial type made of silicon carbide. These are cutting discs for stone but have proved successful in practice for cutting ductile iron pipes. Protective goggles and respiratory protection must be worn when cutting pipes with a cement mortar coating or lining. All swarf must be carefully removed from inside the pipe.
With pipes of fairly large nominal sizes it may happen that the new spigot ends produced are slightly oval after the pipes have been cut. If this happens, the spigot ends should be re-rounded with suitable devices applied to the inside or outside of the pipe, e. g. hydraulic jacks or re-rounding clamps.

The device should not be removed until after the joint has been fully assembled.

DUKTUS

Grinding of cut ends

The cut ends of pipes shortened on site must be bevelled with a grinding disc to match the original spigot ends.
The bevelling should be done as shown in the diagrams.

Repaint the bare metal surface with a paint corresponding to the external protection which the pipe has. A quick drying finishing layer which complies with the requirements of the German Foodstuffs Law is suitable for this purpose.
To speed up the drying process, it is advisable to warm first the pipe ends, and then the paint when it has been applied, with a gas flame.
Then copy the line markings on the original spigot end to the new spigot end which has been cut.

Dimensions for line markings

	DN	80	100	125	150	200	250	300	350
Form A	X	69	73	76	79	85	90	95	95
	Standard socket	Y	82	86	89	92	98	103	108

	DN	400	500	600	700	800	900	1000
Form A	X	95	105	105	135	145	160	170
Standard socket	Y	108	118	118	148	158	173	183
Form B	X	-	-	-	148	157	167	177
Long socket	Y	-	-	-	161	170	180	190

No line marking is used on pipes with BLS ${ }^{\circledR}$ joints. In place of it, a welded bead has to be applied to cut ends of pipes of this kind. On this point see the installation instructions for BLS ${ }^{\circledR}$ joints (Chapter 2) and the technical recommendations for welding (Chapter 9).

For cutting pipes with a cement mortar coating, the directions given from p. 236 on in Chapter 6 should also be followed.

9.9 Technical recommendations for manual metal arc welding ${ }^{1)}$

DUKTUS

Applicability

Welding work can be done on ductile iron pipes to EN 545 in the following cases:

- on water pipelines having allowable operating pressures (PFA) of up to 16 bars
- for welding on DN 2" ductile iron or steel connections
- for welding on DN 80 to DN 300 ductile iron or steel outlets
- puddle flanges for building pipes into structures
- welded beads for restrained push-in joints

These recommendations do not apply to sand-cast fittings and pipes or to grey cast iron pipes.

Pipes with a minimum wall thickness of less than 4.5 mm must not be welded!

Process and electrodes

The process used should be manual metal arc welding using nickel-based stick electrodes, preferably ones complying with EN ISO 1071.
The recommended electrode types are for example:
Castolin 7330-EC, UTP FN 86, ESAB OK 92.58, Gricast 31 or 32.
Basically, the following standards of the German Welding Society (DVS) also apply:
DVS 1502, Parts 1 \& 2
DVS 1148

The welders used should be qualified under DVS 1148.

1) Please consult our Applications Engineering Division before you carry out any welding work for the first time.

DUKTUS

Preparing for welding work

When welding is being done, the temperature of the pipe wall must not be less than $+20^{\circ} \mathrm{C}$.
The workplace must be dry.
The area to be welded must be bright metal. Remove any fouling or zinc coatings by filing or grinding.
Pinholes should not be welded over. They must be ground out down to solid metal and filled with weld metal. Connectors should be matched to the outside diameter of the barrel of the pipe in such a way that, if at all possible, the gap does not exceed 0.5 mm .

Execution of welding work

Type of current

Either AC or DC can be used for welding work. Follow the guidelines for use issued by the electrode manufacturer.

Welding parameters

The current levels and rates of deposition specified by the electrode manufacturer should be taken as the guideline values.

Preheating

Preheating is generally an advantage. The area to be welded should be preheated as detailed in Table 1 before the tack welding and before the root pass is welded.

Table 1

Conditions for crack-free welds on ductile iron pipes.

Thicknessof pipe wall(actual)	In at least two passes (inc. for pipe to connection joints)		
	Not filled with water *)		Filled with flowing water
	Not cement-mortar lined	Cement-mortar lined	Cement-mortar lined
$\geq 4,7 \ldots 6 \mathrm{~mm}$	At $20^{\circ} \mathrm{C}$	At $20^{\circ} \mathrm{C}$	Not allowed
$6 \ldots 10 \mathrm{~mm}$	At $20^{\circ} \mathrm{C}$	At $20^{\circ} \mathrm{C}$	At $20^{\circ} \mathrm{C}{ }^{\prime \prime}$
$10 \ldots 12 \mathrm{~mm}$	Preheat to $150{ }^{\circ} \mathrm{C}$	At $20^{\circ} \mathrm{C}$	At $20^{\circ} \mathrm{C}$ "
$>12 \mathrm{~mm}$	Preheat to $150{ }^{\circ} \mathrm{C}$	Preheat to $150{ }^{\circ} \mathrm{C}$	Preheat to $150{ }^{\circ} \mathrm{C}$

*) Also applies to partly filled pipelines when the areas for welding are above the water table
${ }^{* *}$) Preheating is advisable when the pipe wall temperature is below $20^{\circ} \mathrm{C}$

Tack welding

Fix the parts to be welded in place with suitable clamping devices. They must be tack welded at at least two points. The angles of the tack welds should be as shallow as possible so that they can be welded over; this can be achieved by grinding them if necessary. Check the tack welds to ensure they are free of cracks. Any cracks in tack welds must be ground out.

Welding

Any weld must be made as far as possible in a single operation. Interruptions in the welding work should be avoided. Make sure that the preheating temperature is maintained during the welding. If there are interruptions in the welding work, preheat again as in Table 1 before resuming welding.

DUKTUS

Welding on of DN 2" ductile iron or steel branch connections

Branch connections are supplied in a ready-to-weld state and can be welded on with fillet welds once the zone for the welding has been prepared and the branch connection has been matched to the outside diameter of the main pipe. The weld should be made in two passes. The a dimension of the first pass (root pass) should be 3 mm .
The second pass should be a weave pass between the main pipe and the branch connection over the top of the root pass.
The finished weld should be flat to slightly concave. The test of the weld for leaktightness should be carried out before the hole is drilled in the main pipe. On water pipelines it should be made at the system test pressure (STP), which is the nominal pressure +5 bars.

Welding on of DN 80 to DN 300 ductile iron or steel outlets

The nominal size of the outlets may not be more than half the nominal size of the main pipe.
Outlets are to be welded on with fillet welds. The welding should generally be done in two passes. The a dimension of the first pass (root pass) should be at least 3 mm . The second pass should be first a weave pass between the root pass and the main pipe and then a weave pass between the root pass and the outlet. The finished weld should be flat to slightly concave and its a dimension should be $0.7 \mathrm{~s}_{-0.5}^{+2}$ ($\mathrm{s}=$ thickness of the outlet). On outlets of DN 250 and DN 300 nominal size, a final pass may also be welded to give the a dimension.

DUKTUS

It may be an advantage for the welding-on of outlets of fairly large sizes to be done with a buffer layer. The test of the weld for leaktightness should be carried out before the hole is drilled in the main pipe. On water pipelines it should be made at the system test pressure (STP), which is the nominal pressure +5 bars.
When new pipelines are being laid it is advisable for outlets to be welded on out of the pipeline trench. In this case the hole in the main pipe can be drilled before the outlet is welded on. The internal pressure test on the outlet can then be carried out together with the pressure test on the pipeline.

Welding on of ductile iron or steel puddle flanges

Pipes with puddle flanges are used to allow pipes to be built into structures. By welding it is possible for puddle flanges to be fastened in place at any desired point along the barrel of a pipe.
Puddle flanges are supplied in annular sections and should be fitted tightly to the pipe.

Welding

Puddle flanges should be welded on with at least two-pass fillet welds and the a dimension of the welds should not be less than 4 mm . On pipes of fairly large sizes with corresponding wall thicknesses it is advisable for a buffer layer to be used.

DUKTUS

The length of the weld should be decided on in line with the operating requirement (allowable thrust $\mathrm{T}_{\text {zul }}=130 \mathrm{~N} / \mathrm{mm}^{2}$).
After being welded on, annular sections should be welded together.

Application of welded beads

When pipes with positive locking restrained push-in joints are cut on site, the welded beads have to be applied to the new spigot ends.
The procedure, accessories and dimensions for this are given in the installation instructions under "Cutting of pipes".

Heat treatment after welding

No heat treatment of welded joints or welded parts is required after they have been welded.
The area of the weld should be cleaned once it has cooled and, after checking, should be carefully repainted with a protective paint such for example as a bitumen-based one.

Checking of welds

Welds should generally undergo a visual inspection and, where necessary, a non-destructive test for surface flaws and cracks.
Welds which are not called upon to be leaktight, such as those fixing puddle flanges for example, should be randomly checked for surface flaws.
Flaws, such as surface pores or cracks in or next to the weld, which are found in the course of checking or testing should be fully ground out before they are repaired.
Flaws may only be repaired once.
vonRoll hydro (deutschland) gmbh \& co. kg
Sophienstr. 52-54
35576 Wetzlar
Germany
T +49 6441492401
F +49 6441491455
www.vonroll-hydro.world

KEULA

[^0]: Sidtepf Dillenturg vor 176a

[^1]: 1) Tolerances are possible, 2) PFA: allowable operating pressure; PMA $=1.2 \times$ PFA;

 PEA $=1.2 \times$ PFA +5 - higher PFA's on enquiry, 3) Plus high-pressure lock if required with DN 80 to

[^2]: 1) PFA: allowable operating pressure; PMA $=1.2 \times P F A ; P E A=1.2 \times P F A+5-$ higher PFA's on enquiry, 2) Theoretical weight per pipe inc. cement mortar lining, zinc (zinc-aluminium) and finishing layer, 3) Theoretical weight per pipe inc. cement mortar coating \& lining and zinc,
 2) Plus high-pressure lock if required with DN 80 to DN 250 sizes, 6) Higher tractive forces on enquiry, 7) Min. radius of curves, which results from the angular deflection possible at the sockets - applies to both open trench and trenchless laying, 8) Approx. assembly time of the joint, not including any protection it may be given, 9) See notes on the use of clamping rings, $\mathrm{p} .90 \mathrm{ft}, 10) \mathrm{S}_{\min }=5 \mathrm{~mm}$
[^3]: 1) Tolerances are possible. 2) PFA: allowable operating pressure; PMA $=1.2 \times \mathrm{PFA}$

 PEA $=1.2 \times$ PFA +5 - higher PFA's on enquiry. 3) Higher tractive forces on enquiry

[^4]: * To manufacturer's standard

[^5]: * To manufacturer's standard

[^6]: * Take note of the PFA of the BLS ${ }^{\text {® }}$ joint

[^7]: $L_{u}=$ laying length in the locked state
 $z=$ mean laying length (when used without a welded bead)

 * Take note of the PFA of the BLS ${ }^{\oplus}$ joint

[^8]: * Take note of the PFA of the BLS ${ }^{\text {® }}$ joint

[^9]: 1) PFA of 100 with high-pressure lock 2) Max. PFA of 32
[^10]: 1) To manufacturer's standard
[^11]: 1) To manufacturer's standard
[^12]: R has to be adapted for pipes of other nominal sizes (DN's)

[^13]: 1) To manufacturer's standard
[^14]: 1) To manufacturer's standard
[^15]: 1) To manufacturer's standard
[^16]: * Only the negative limit deviation is given

[^17]: 1) Sleeves are supplied already cut to the specified length and fitted with a sealing strip. Tape material in the form of 30 m rolls is available on enquiry for DN 250 to DN 1000 sizes
[^18]: Please ask the manufacturer for any further details required

[^19]: Please ask the manufacturer for any further details required

[^20]: For matching duckfoot bend for hydrants see Chapter 2, p. 81; please ask the manufacturer for any further details required

