

Where safe sealing of water, air, acids, alkalines and hydrocarbons is required at low forces and low temperatures, KLINGER-KGS is an interesting solution. Suitable for flanges made of plain steel, stainless steel, glassfibre reinforced plastic, PP, PVC, PE and for coated flanges.

KLINGER – The worldwide leader in seal technology

KLINGER-KGS Rubber-Metal-Gasket acc. to DIN EN 1514-1, Form IBC replaces DIN 2690

Application fields Media

water

gas

- waste water
- chemicals

Flanges

plain steel, stainless steel

- cast
 GFK (glassfibre reinforced plastic)
- PP/ PVC/ PE
- coated flanges

Safe sealing of water, air, acids, caustic solutions and hydrocarbons with low forces at temperatures up to max. 200°C.

Type KGS, Typ KGS/Guss*

at piping design for gas and water piping

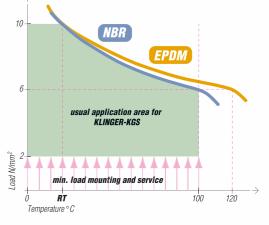
■ for slightly damaged and not always correct routed pipelines

Type KGS/S

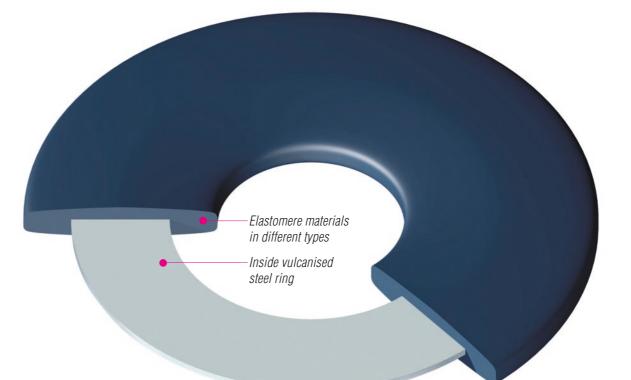
at piping design for gas and water piping

at rubber coated flanges of pipes and apparatus

at enamelled flanges of pipes and apparatus


■ fat constructions of plastic apparatus (low sealing forces)

* for cast iron flange dimensions

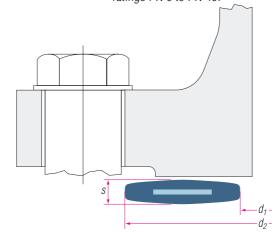

Characteristic values for NBR-GW and EPDM-KTW

 $k_0 x K_D = 2 b (N/mm^2)$ $k_1 = 0.5 (mm)$

Max. roughness: 50 bis 100 µm depending on roughness.

KGS and KGS/Guss*

Vulcanised rubber gasket, lenticular shape, rounded edges.


Inside vulcanised steel ring, thereby good absorption of surface pressure.

• Outer diameter self-centering to the inner diameter of the screw holes.

■ The gaskets are made of NR = Vulcanisates of natural rubber (SBR), NBR-GW (Nitril rubber), EPDM-KTW (Ethylen-Propylen rubber), CSM/ Hypalon (chlorosulfonated polyethylene) and FKM = Viton (Fluoro elastomere) every with inside vulcanised steel ring.

The NBR-GW-type is approved by DVGW and recommended according to KTW (potable water application).

Dimension in DIN EN 1514-1 (replaces DIN 2690) for the pressure ratings PN 6 to PN 40.

Sizes at the measurement table

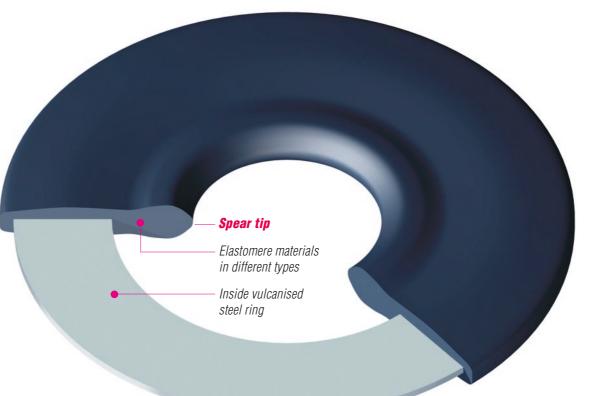
s = Thickness

Example for order:

DN 100, PN 10-16

Rubber-Metal-Gasket KLINGER-KGS

made of NBR-GW according to


DIN EN 1514-1, Form IBC

 $d_1 = Inner \, diameter$

 $d_2 = Outer diameter$

* for cast iron flange dimensions

KGS/S (S = Spear tip)

■ Vulcanised rubber gasket, lenticular shape at the gasket body with integrally molded **spear tip** at the inside of the gasket, rounded edges. The new shape with "**spear tip**" offers higher safety against pressurized volumes at the sealing area and corrosion.

■ Thereby especially suitable for flanges made of thermoplastic material.

Optimal sealing properties in case of flange unevennesses.

Safe sealing already at lowest tightening torques.

■ The gaskets are made of NR = Vulcanisates of natural rubber (SBR), NBR-GW (Nitril rubber), EPDM-KTW (Ethylen-Propylen rubber), CSM/ Hypalon (chlorosulfonated polyethylene) and FKM = Viton (Fluoro elastomere) every with inside vulcanised steel ring.

The NBR-GW-type is approved by DVGW and recommended according to KTW (potable water application). Dimension in DIN EN 1514-1 (replaces DIN 2690) for the pressure ratings PN 6 to PN 40.

Example for order: Rubber-Metal-Gasket KLINGER-KGS made of NBR-GW according to DIN EN 1514-1, Form IBC DN 100, PN 10-16

 s_{2} s_{1} d_{1}

Sizes at the measurement table

 $s_1 = Sealing lip$

 $s_2 = Sealing \ body$

 $d_1 = Inner \, diameter$

 $d_2 = Outer diameter$

KLINGER Rubber-Metal-Gasket Type KGS, KGS/Guss^{*}, KGS/S

Material

* for cast iron flange dimensions

Function and durability

Application field

Colour

Hardness

Density

Temperature

Certificates

Application

Chemical resistance

The performance and life of KLINGER gaskets depend in large measure on proper storage and fitting, factors beyond the manufactor's control. We can, however, vouch for the excellent quality of our products. With this in mind, please also observe our installation instructions.

NR = Natural rubber (SBR) for Gas and potable water. Approved according to pr EN682 (DIN E 3535T3) water, closed loop water arrangements, soluted lyes at max. 50 % conc. and approved according to KTW D1/D2, max. 80°C 1.3.31 of national health service black black DIN 53505, Shore A 60 - 80 ±5 DIN 53505, Shore A 70 ±5 DIN 53479, g/cm3 1,384 DIN 53479, g/cm³ 1,196 app. +100°C, short-term up to +130°C approx +80°C, short-term up to +90°C Approval of own test facility DVGW-approval incl. KTW-approval Resistant against: Resistant against: water, seawater, pond water, aliphatic hydrocarbons closed loop water up to 90°C (mineral oils and greases, partly against alkalines, diesel fuel, petrol) 50% NaOH at 50°C many of diluted acids and alkalines at ambient temperature

sufficient resistant against natural lighting, weather and ozone

Not resistant against:

90°C have to be avoided.

■ fuel, mineral oils, acids and gases

The application of NR-vulcanisates is

possible where natural media have to

be sealed. Temperatures higher than

Not resistant against:
aromatic and chlorinated
hydrocarbons
highly oxidising acids

water and many salt dilutions at

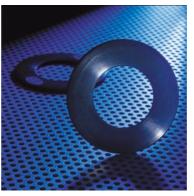
ambient temperature ■ animal and vegetable oils and

areases

polar solvents

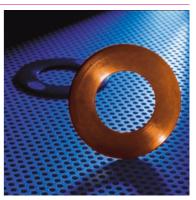
The NBR type has a good chemical resistance against aliphatic hydrocarbons, mineral oils and greases, diesel fuel and petrol.

his in mind, please also obour installation instructions.



KLINGER Rubber-Metal-Gasket Type KGS, KGS/Guss^{*}, KGS/S

EPDM-KTW CSM

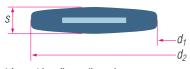

* for cast iron flange dimensions

CSM / Hypalon (chlorosulfonated polyethylene) the application are in the chemical industry

FKM/Viton

FKM= Viton (Fluoro elastomere) the application are in the chemical industry and production

Potable water/ waste water. Approved according to KTW D1/D2, 1.3.31 of national health service for potable water


lack	black	brown
DIN 53505, Shore A 70 ±5	DIN 53505, Shore A 70 +/-5	DIN 53505, Shore A 75 +/-5
DIN 53479, g/cm³ 1,120	DIN 53479, g/cm³ 1,340	DIN 53479, g/cm³ 1,880
pp. +100°C, short-term up to +130°C	арргох. +80°С	арргох. +200°С
(TW-approval, EN 681-1, V 270, ACS, WRC, Ö-Norm	Approval of own test facility	Approval of own test facility
Pesistant against: water and water dilutions of salts many of diluted acids and alkalines polar media as alcohol, ester and ketone washing agents hydraulic media based on water-glycol (HFC-fluids) hydraulic media based on phosphoric esters (HFD-R-fluids)	Resistant against: ■ many acids up to 50°C ■ good resistant against natural lighting and ozone	Resistant against: acids and alkalines gases all kind of water
lot resistant against: aliphatic, aromatic and chlorinated hydrocarbons (oils, greases and fuels) highly oxidising acids	Not resistant against: ■ at temperatures below -15°C and over +80°C	Not resistant against: ■ partial resistance at temperatures of -10°C and lower
dditionally to the applications acc. the chemical resistance, the EPDM pe is well suitable for applications chich require good ozone-, ageing- nd weathering resistance.	The application of CSM-vulcanisates are in the chemical industry, dry-cleaning etc.	As there is a good chemical resistance for acids and alkalines, th main application field is in the chemical production and users of chemicals.

KLINGER-KGS

Gaskets acc. to DIN 2690 for raised face flanges acc. to DIN EN 1514-1, Form IBC (Inner Bolt Circle)

Type KGS and KGS/Guss*

* for cast iron flange dimensions

Type KGS/S

Sizes at the measurement table

- s = Thickness
- $s_1 = Sealing lip$
- $s_2 = Sealing body$
- $d_1 = Inner \, diameter$
- $d_2 = Outer diameter$

Dimension in DIN EN 1514-1 (replaces DIN 2690) for the pressure ratings PN 6 to PN 40.

The gaskets are made of NR = Vulcanisates of natural rubber (SBR), NBR-GW (Nitril rubber), EPDM-KTW (Ethylen-Propylen rubber), CSM/ Hypalon (chlorosulfonated polyethylene) and FKM = Viton (Fluoro elastomere) every with inside vulcanised steel ring.

Example for order:

Rubber-Metal-Gasket KLINGER-KGS made of NBR-GW according to DIN EN 1514-1, Form IBC DN 500, PN 10

The table on the right is only for your information. Please refer to our actual price list to find those dimensions which can be deliverd or give us your inquiry.

DN s Type		s Type	<i>d</i> ₁	d ₁ d ₁		1 / 2,5		
	KGS	KGS/S	DIN 2690	DIN 1514	1 / 2,5 Din 2690	DIN 1514		
4	-	-	6	_	-	_		
6	-	-	10	_	28	_		
8	-	—	14	—	33	_		
10	-	—	18	18	38	39		
15	4	3/4	22	22	43	44		
20	4	3/4	28	27	53	54		
25	4	3/4	35	34	63	64		
32	4	3/4	43	43	75	76		
40	4	3/4	49	49	85	86		
50	4	4/5	61	61	95	96		
601	-	-	-	_	-	106		
65	4	4/5	77	77	115	116		
80	4	4/5	90	89	132	132		
100	5	5/6	115	115	152	152		
125	6	5/6	141	141	182	182		
150	6	6/7	169	169	207	207		
(175)	-	_	195	_	237	_		
200	6	6/7	220	220	262	262		
250	6	6/7	274	273	318	317		
300	6	6/7	325	324	373	373		
350	7	7/9	368	356	423	423		
400	7	7/9	420	407	473	473		
450	7	7/9	470	458	528	528		
500	7	7/9	520	508	578	578		
600	7	7/9	620	610	680	679		
700	8	8/10	720	712	785	784		
800	8	8/10	820	813	890	890		
900	8	8/10	920	915	990	990		
1000	8	8/10	1020	1016	1090	1090		
1100	8	8/10	_	1120	_	_		
1200	8	8/10	1220	1220	1290	1290		
1400	8	8/10	1420	1420	1490	1490		
1500 ¹	_	-	_	1520	-	_		
1600	8	8/10	1620	1620	1700	1700		
1800	8	8/10	1820	1820	1900	1900		
2000	8	8/10	2020	2020	2100	2100		
2200	-	-	2220	2220	2305	2307		
2400	_	_	2420	2420	2505	2507		
2600	_	_	2620	2620	2705	2707		
2800	_	_	2820	2820	2920	2924		
3000	_	_	3020	3020	3120	3124		
3200	_	_	3220	3220	3320	3324		
3400	-	_	3420	3420	3520	3524 3524		
3600	+		3620	3620	3730	3734		
3800	-	_	3820	3820	3930	3734 3931		
4000	-		4020	4020	4130	4131		

Dimensions in mm, 1) only for cast iron flanges

KLINGER-KGS Gaskets acc. to DIN 2690 for raised face flanges

acc. to DIN EN 1514-1, Form IBC (Inner Bolt Circle)

				or PN					
6 Din 2690	6 DIN 1514	10 Din 2690	10 Din 1514	16 Din 2690	16 Din 1514	25 DIN 2690 <i>30</i>	25 DIN 1514	40 Din 2690	40 Din 1514
- 28	_		-	 38	_	30	_		_
33	_	43	_	43	_	43	_	43	_
38	39	45	46	45	46	45	46	45	46
43	44	50	51	50	51	50	51	50	51
53	54	60	61	60	61	60	61	60	61
63	64	70	71	70	71	70	71	70	71
75	76	82	82	82	82	82	82	82	82
85	86	92	92	92	92	92	92	92	92
<i>95</i>	96	107	107	107	107	107	107	107	107
_	106	_	117	_	117	_	117	_	117
115	116	127	127	127	127	127	127	127	127
132	132	142	142	142	142	142	142	142	142
152	152	162	162	162	142	168	168	168	168
182	152 182	102	162 192	102	162 192	108	108 194	195	108
207	207	218	218	218	192 218	225	194 224	225	224
207 237	-	210		210	210				
262		240	-		273	255 285	-	267 292	-
	262		273	273			284		290
318	317	328	328	330	329	342	340	353	352
373	373	378	378	385	384	402	400	418	417
423	423	438	438	445	444	458	457	475	474
473	473	490	489	497	495 555	515	514	547	546
528	528	540	539	557	555	565	564	572	571
578	578	595	594	618	617	625	624	628	628
680	679	695	695	735	734	730	731	745	747
785	784	810	810	805	804	830	833	850	-
890	890	915	917	910	911	940	942	970	-
990	990	1015	1017	1010	1011	1040	1042	1080	-
1090	1090	1120	1124	1125	1128	1150	1154	1190	-
-	-	-	1231	-	1228	-	1251	-	-
1305	1307	1340	1341	1340	1342	1360	1364	1395	-
1520	1524	1545	1548	1540	1542	1575	1578	1615	-
-	-	-	1658	-	1654	-	1688	-	-
1720	1724	1770	1772	1760	1764	1795	1798	1830	-
1930	1931	1970	1972	1960	1964	2000	2000	_	-
2135	2138	2180	2182	2165	2168	2230	2230	_	-
2345	2348	2380	2384	2375	-	-	_	-	-
2555	2558	2590	2592	2585	-	_	_	_	_
2760	2762	2790	2794	2785	-	-	_	—	-
2970	2972	3010	3014	-	-	-	-	-	-
3170	3172	3225	3228	-	-	-	-	-	-
3380	3382	-	-	-	-	-	-	-	-
3590	3592	-	_	-	-	-	_	_	-
3800	3804	_	_	-	-	-	-	_	-
-	_	-	_	-	-	-	_	-	_
-	_	_	-	-	_	-	_	-	_

KLINGER-KGS Chemical resistance

Medium	NR	NBR- GW	EPDM- KTW	CSM	FKM- Viton	Medium	NR	NBR- GW	EPDM- KTW	CSM	FKM- Viton
Acetaldehyde	•		•			Citric acid	•	•	•	•	•
Acetamide		•	•			Clorotrifluoride					
Acetic acid			•			Condensation water		•	•		
Acetic acid ester			•	•		Copper acetate			•		
Acetone	•		•			Copper sulphate	•	•	•	•	•
Acetylene	•	•	•	•	•	Creosote					•
Adipic acid	•	•	•	•	•	Cresol					•
Air			•		•	Crude oil		•			•
Alum	•	•	•	•	•	Cyclohexanol		•			•
Aluminium acetate	•	•	•			Decahydronaphthalen		-			•
Aluminium chlorate	-	•	•	-	_	Dibenzyl ether					•
Aluminium chloride	•	•	•	•	•	Dibutyl phthalate			•		
Ammonia			•	•		Diesel oil		•			•
Ammonium carbonate	•		•	•		Dimethyl formamide			•		
Ammonium chloride	•	•	•	•		Diphyl					•
		•	•	•		Ethane		•			
Ammonium diphosphate	-	-	•	•	-	Ethanol		-		•	•
Ammonium hydroxide			-			Ethyl acetate	•		•	-	
Amyl acetate			•						•		
Aniline			•		•	Ethyl alcohol	•		•		•
Anon cyclohexanone						Ethyl chloride					•
Arcton 12		•			•	Ethyl ether					
Arcton 22	•		•	•		Ethylendiamine	•	•	•		
Asphalt					•	Ethylene		•			
Aviation fuel		•			•	Ethylene chloride					•
Barium chloride	•	•	•	•	•	Ethylene glycol	•	•	•	•	•
Benzene					•	Fluorine dioxide					_
Benzoic acid	•	•	•	•	•	Fluorine gaseous					
Blast furnace gas						Fluorine liquid					
Bleaching solution			•	•	•	Fluorosilicic acid					
Boiler feed water			•			Formaldehyde	•	•	•	•	
Borax	•	•	•	•	•	Formamide	•		•	•	
Boric acid	•	•	•	•	•	Formic acid 10%			•	•	
Brine		•	•	•	•	Freon 12		•		•	
Butane		•			•	Freon 22			•	•	
Butanol	•		•	•	•	Generator gas		•			•
Butanone			•			Glacial acetio acid			•		
Butyl acetate			•			Glycerin	•	•	•	•	•
Butylamine		•				Heating oil		•			•
Butyle alcohol	•		•		•	Heptane		•			•
Butyric acid			•			Hydraulic oil (mineral)		•			•
Caesium melt						Hydraulic oil (phosphat ester)			•		•
Calcium chloride	•	•	•	•	•	Hydrazine hydrate			•		
Calcium hydroxide	•	•	•	•	•	Hydrochloric acid (10%)			•	•	•
Calcium hypochlorit			•	•	•	Hydrochloric acid (37%)			•		
Calcium sulphate		•	•	-	-	Hydrofluorid acid			•	•	•
Carbolic acid					•	Hydrofluosilic acid	•	•	•	•	•
Carbon dioxide	•	•	•	•	•	Hydrogen	•	•	•	•	•
Carbon disulphide					•	Hydrogen chloride (dry)			•	•	•
Carbon tetrachlorid					•	Hydrogen peroxide 3%			•	•	•
Carbon tetracinond	•	•	•	•	•	Hydrogen peroxide 90%		_			
		_							-		
Chlorine water			-		•	Hydrogen sulfide			•		
Chlorine, dry					•	Isooctane		•			•
Chlorine, moist					•	Isopropyl alcohol	•		•	•	•
Chloroform					•	Kerosene		•			•
Chromic acid		A				Lactic acid	•				

Resistant
 Condit. recommended
 Not recommended

KLINGER-KGS Chemical resistance

Medium	NR	NBR- GW	EPDM- KTW	СSM	FKM- Viton	Medium	NR	NBR- GW	EPDM- KTW	CSM	FKM [.] Viton
Lead acetate	•		•			Rubidium melt					
Lead arsenate		•				Salicylic acid	•	•	•	•	•
Linseed oil		•			•	Sea water	•	•	•	•	
Lithium melt						Silicon oil	•	•	•	•	•
Magnesium sulphate	•	•	•	•	•	Skydrol 500, 7000			•		
Malic acid		•	•	•	•	Soap, solution		•	•	•	•
MEK butanone						Soda	•	•	•	•	•
Methane		•			•	Sodium aluminate					
Methyl alcohol	•		•	•		Sodium bicarbonate	•	•	•	•	•
Methyl chloride					•	Sodium bisulphite		•	•	•	
Methyl cloride					•	Sodium chloride	•	•	•	•	•
Methylene chloride						Sodium cyanide	•	•		•	
Mineral oil		•			•	Sodium hydroxide			•	•	
Monochlorethane					•	Sodium melt					
Naphtha						Sodium silicate	•	•	•	•	
Natural gas		•			•	Sodium sulfide		•	•	•	•
Nitric acid					•	Sodium sulphate	•	•	•	•	•
Nitrobenzene					•	Spirit	•		•	•	
Nitrogen	•	•	•	•	•	Starch	•	•	•	•	•
Octane (n)					•	Steam (max. 150 °C)			•		
Oil		•			•	Stearic acid 100°C					•
Oleanolic Acid		-			•	Sugar	•	•	•	•	•
Oleic acid					•	Sulphur dioxide			•		•
Oxalic acid			•		•	Sulphuric acid			-		•
Oxygen, gaseous, cold			•		•	Sulphurous acid			•	•	•
Palmitic acid		•			•	Table salt	•	•	•	•	•
Patable water	•	•	•	•	•	Tannic acid	•	•	•	•	•
Pentane		•		-	•	Tannin	•	•	•		•
Perchlorethylene					•	Tar					•
Petroleum		•			•	Tartaric acid	•	•	•	•	•
Petroleum benzin					•	Tetrachloroethane			-		
Petroleum ether		•			•	Tetrahydronaphthale					•
Phenol					•	Toluene					•
Phosphoric acid					•	Town gas (benzene free)		•			•
Polychl.biphenyls.					•	Transformer oil		•			•
Potass.chrom.sulph.			•		•	Trichloroethylene					•
Potassium acetate	•		•			Triethanolamine					
Potassium carbonate	•	•	•	•	-	Turpentine					
Potassium chlorate			•	•	•	Urea	•	•	•	•	•
Potassium chloride	•	•	•	•	•	Vinyl acetate					
Potassium cyanide			•	•	•	Water 100°C			•		
Potassium cyanide	•	•	•	•	•	Water flask	•	•	•	•	•
Potassium dichrom.			•	•	•	Water vapour (max. 150°C)			•		
Potassium hydroxide			•	•		White spirit					•
Potassium hypochl.	-				_	Xylene					•
Potassium iodide	•	•	•	•	•		-			-	-
Potassium melt											
Potassium nitrate		•	•								
Potassium nitrite	•	•		•	•						
Potassium permang.			•	•	•						
, ,			•								
Propane Pudraul C		•			•						
Pydraul C					•						

Pydraul E 🔺

Pyridine 🔺

Rape seed oil 🔺

KLINGER-KGS Mounting instructions

On principle following mounting instructions for KLINGER-KGS material have to be taken in account.

1. Selection of the gasket

The suitable type of gasket material can be selected according the KLINGER information – first of all the chemical resistance.

2. The Flanges

Flanges should be parallel, metallically clean and dry, the gasket has to be mounted centrically.

Please pay attention to the correct inner- and outer diameter, never the gaskets should tower into the throughhole! The outer diameter of the KGSgasket is adapted to the bolt circle of the flange. Therefore a safe centering is insured by the bolts.

3. The mounting of the gasket

The mounting of the gasket should be performed without any grease- or oilcontaining separating media.

On no account oil or grease containing products may be used, as they have an negative influence on the safety of the complete flange connection.

4. The Bolts

During installation the bolts have to be tightened in several steps, equal and crosswise.

The screws should be greased if possible.

5. Re-tighten

"Re-tighten" is usually not necessary if a.m. references will be followed.

6."Multi-use" of a gasket

To use a gasket more than one time can not be recommended.

If there is an demand on advice please contact a KLINGER company or an representative.

Klinger supplies you with superior seal products for all applications

KLINGER Service for your safety: Application overviews, product documentations, tables for media resistance, safety service by fax, original test material and of course consulting on site and custom developments meeting your special requirements.

ENERG

KLINGER KGS/VD

HEMIS

The seal registered for patent approval compensates oblique flange positions up to approx. 8°.

KLINGER Wall collars

The wall collar protects against humidity penetration in case of infiltration water or ground water.

KLINGER-KGS The rubber-steel gaskets

Application areas are water, waste water, gas, air, acids, caustic solutions and hydrocarbons with low forces and relatively low temperatures.

KLINGER GmbH

Rich.-Klinger-Straße 37 D-65510 Idstein Phone +49 (0) 6126 4016-0 Fax +49 (0) 6126 4016-11/-22 e-mail: mail@klinger.de http://www.klinger.de

Certified according to DIN EN ISO 9001:2000 Technical changes reserved, July 2008