

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0569 of 10 August 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Wedge Anchor ESSVE ESA7

Torque controlled expansion anchor for use in non-cracked concrete

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

Production plant no. 516

16 pages including 3 annexes which form an integral part of this assessment

European Assessment Document (EAD) 330232-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0569 English translation prepared by DIBt

Page 2 of 16 | 10 August 2017

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 16 | 10 August 2017

Specific Part

1 Technical description of the product

The Wedge Anchor ESSVE ESA7 in the range of M6, M8, M10, M12, M16 and M20 is an anchor made of electroplated, hot dipped galvanised steel, stainless steel or high corrosions resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance	See Annex C 1 to C 3
Displacements under tension and shear loads	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

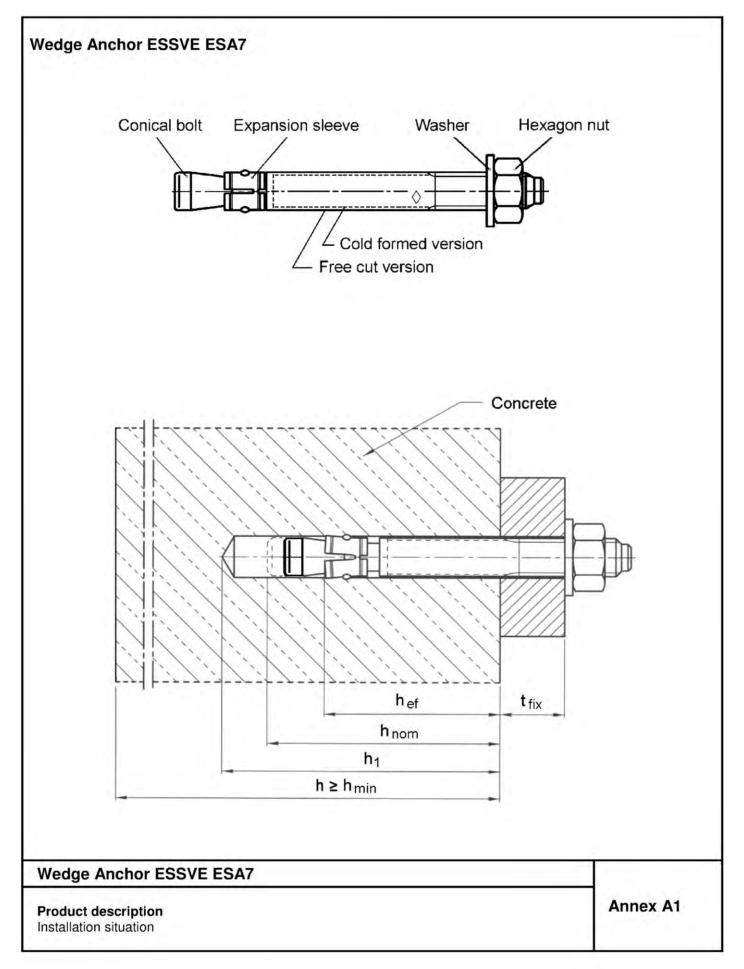
The system to be applied is: 1

Page 4 of 16 | 10 August 2017

European Technical Assessment ETA-17/0569 English translation prepared by DIBt

Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 10 August 2017 by Deutsches Institut für Bautechnik

Andreas Kummerow Head of Department

5

beglaubigt: Baderschneider

Page 6 of European Technical Assessment ETA-17/0569 of 10 August 2017

English translation prepared by DIBt

	Marking: B Anc	e.g. tifying m tufacturin timum th xture for timum th xture for thor iden thor size	nark of ng plant ickness h _{ef} ickness h _{ef.red}		3		SW	(4) Mark of ler)	
Marking of length A	ВС	D	E	F	G	н		J	ĸ	L	м	

	Marking of length	A	D		U	E	F	G	п		J	n	L	IVI
l	Length of anchor min \geq	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
l	Length of anchor max <	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
L														
	Marking of length	Ν	0	Р	Q	R	S	T	U	V	w	X	Y	z
L	Marking of length Length of anchor min ≥	N 203,2	O 215,9	P 228,6	Q 241,3		S 279,4	T 304,8	U 330,2	V 355,6		X 406,4	Y 431,8	Z 457,2

Table A1: Dimensions, steel zinc plated

			Anchor	Wrench	
Anchor size	$\emptyset \mathbf{d}_{\mathbf{k}}$	$\emptyset d_s$	Standard anchorage depth	Reduced anchorage depth	size [SW]
Steel electroplated	d and hot-dip	galvanised			
M6	6	6 / 5,3 ¹⁾	t _{fix} + 57,4	$t_{fix hef, red} + 47, 4$	10
M8	8	8 / 7,1 ¹⁾	t _{fix} + 66,4	t _{fix hef,red} + 57,4	13
M10	10	10 / 8,9 ¹⁾	t _{fix} + 74,0	t _{fix hef,red} + 68,0	17
M12	12	12 / 10,7 ¹⁾	t _{fix} + 97,3	t _{fix hef,red} + 82,3	19
M16	16	16 / 14,5 ¹⁾	t _{fix} + 121,0	t _{fix hef,red} + 103,0	24
M20	20	20 / 18,2 ¹⁾	t _{fix} + 142,7	t _{fix hef,red} + 120,7	30

1) cold formed version

Table A2: Material properties, steel zinc plated

		Mate	erial
Part	Designation	Steel, electroplated ≥ 5 μm acc. to EN ISO 4042:1999	Steel, hot-dip galvanised ≥ 40 μm, acc. to EN ISO 1461:2009
1	Conical bolt	Cold formed or machined steel	Cold formed or machined steel
2	Expansion sleeve	Steel, acc. to EN 10088:2005, material No. 1.4301 or 1.4303	Steel, acc. to EN 10088:2005, material No. 1.4301 or 1.4303
3	Washer	Steel	Steel
4	Hexagon nut	Property class 8 acc. to EN ISO 898-2:2012	Property class 8 acc. to EN ISO 898-2:2012

Wedge Anchor ESSVE ESA7

Product description

Anchor dimensions, marking and materials, steel zinc plated

Annex A2

Dimensions in mm

Page 7 of European Technical Assessment ETA-17/0569 of 10 August 2017

English translation prepared by DIBt

Ød	0	ِ و	 Ide ma 15 Ma of 21 Ma of A4 Sta 	entifying anufactu aximum fixture fo aximum fixture fo ainless s	thicknes or h _{ef.red} steel A4 steel HC	nt s R	3		sw	4			
		LU 		nchor ide nchor siz	entity	d _s — (Mark of len		e	
Marking of length		LU 	Marking: Ar Ar	nchor ide	entity	d _s — (G					L)) M
1			Marking: B Ar M10 Ar	nchor ide nchor siz	entity ze	∳ L		H 127,0		of len	igth	L 177,8	M 190,5
Marking of length		B	Marking: B Ar M10 Ar C	nchor ide nchor siz D	entity ze E	L F	G		139,7 152,4	of len	igth K		<u> </u>
Marking of length Length of anchor min ≥	A 38,1	B 50,8	Marking: 3 Ar M10 Ar C 63,5	D 76,2	entity ze E 88,9	L F 101,6	G 114,3	127,0		of len J 152,4	K 165,1	177,8	190,5
Marking of length Length of anchor min ≥ Length of anchor max <	A 38,1 50,8	B 50,8 63,5	Marking: Ar M10 Ar C 63,5 76,2	D 76,2 88,9	E 88,9 101,6	L F 101,6 114,3	G 114,3	127,0 139,7	152,4	of len J 152,4 165,1	K 165,1 177,8	177,8 190,5	190,5 203,2

Table A3: **Dimensions, stainless steel A4/HCR**

			Anchor	length L	Wrench
Anchor size	$\emptyset \mathbf{d}_{\mathbf{k}}$	$\emptyset d_s$	Standard anchorage depth	Reduced anchorage depth	size [SW]
Stainless steel	A4/HCR				
M6	6	6 / 5,3 ¹⁾	t _{fix} + 57,4	t _{fix hef,red} + 47,4	10
M8	8	8 / 7,1 ¹⁾	t _{fix} + 66,4	t _{fix hef,red} + 57,4	13
M10	10	10 / 8,9 ¹⁾	t _{fix} + 74,0	t _{fix hef,red} + 68,0	17
M12	12	12 / 10,7 ¹⁾	t _{fix} + 96,5	t _{fix hef,red} + 81,5	19
M16	16	16 / 14,5 ¹⁾	t _{fix} + 117,8	t _{fix hef,red} + 101,8	24
M20	19,7	19,7 / 18,2 ¹⁾	t _{fix} + 142,7	t _{fix hef,red} + 120,7	30

1) cold formed version

Designations and Materials, stainless steel A4/HCR Table A4:

Part	Designation	Stainless steel A4	High corrosion resistant steel HCR
1	Conical bolt	Stainless steel 1.4401, 1.4404, 1.4571, 1.4578, 1.4362, EN 10088:2005, coated	High corrosion resistant steel 1.4529, 1.4565, EN 10088:2005, coated
2	Expansion sleeve	Stainless steel 1.4401, 1.4571, 1.4362,	EN 10088:2005
3	Washer	Stainless steel 1.4401, 1.4571, 1.4362, EN 10088:2005	High corrosion resistant steel 1.4529, 1.4565, EN 10088:2005
4	Hexagon nut	ISO 3506:2009, A4-70, stainless steel 1.4401, 1.4571, 1.4362, EN 10088:2005, coated	ISO 3506:2009, strength class 70, high corrosion resistant steel 1.4529, 1.4565, EN 10088:2005, coated

Wedge Anchor ESSVE ESA7

Product description

Anchor dimensions, marking and materials, stainless steel A4/HCR

Annex A3

Dimensions in mm

Spe	cifications of in	ntended use						
ES	SVE ESA7		M6	M8	M10	M12	M16	M20
	Stool zing ploted	electroplated	✓	✓	✓	✓	✓	✓
ials	Steel zinc plated	hot-dip galvanized	-	✓	✓	✓	✓	✓
Materials	Stainless steel	A4	✓	√	✓	✓	✓	✓
Σ	High corrosion resistant steel	HCR	~	~	~	~	~	~
Stat	tic or quasi-static actio	n			,	1		
Red	luced anchorage dept	.h			,	1		
Non	n-cracked concrete		-		۲	1	-	

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

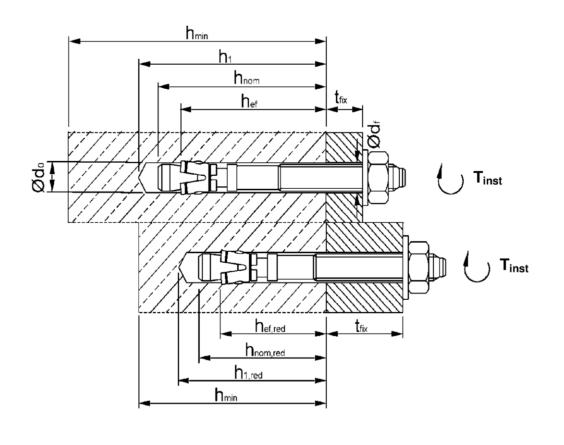
- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions
 (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages are designed according to FprEN 1992-4: 2016 and EOTA Technical Report TR 055.

Installation:

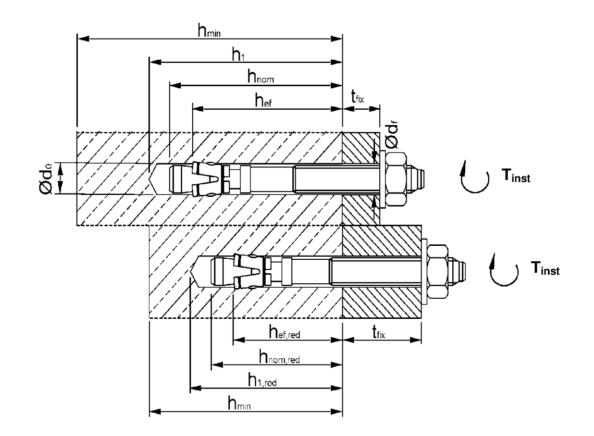

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with. This compliance is ensured, if the thickness of fixture is not greater than the maximum thickness of fixture marked on the anchor in accordance with Annex A1 and A2 and the hexagon nut is placed at the end of the conical bolt as delivered by the manufacturer.

Wedge Anchor ESSVE ESA7

Intended use Specifications Annex B1

Deutsches Institut für Bautechnik

Anchor size			M6	M8	M10	M12	M16	M20
Nominal drill hole diameter	d ₀ =	[mm]	6	8	10	12	16	20
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
Installation torque (ESSVE ESA7 electroplated)	T _{inst} =	[Nm]	8	15	30	50	100	200
Installation torque (ESSVE ESA7 hot-dip galvanised)	T _{inst} =	[Nm]	-	15	30	40	90	120
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	9	12	14	18	22
Standard anchorage depth								
Depth of drill hole	$h_1 \geq$	[mm]	55	65	70	90	110	130
Embedment depth	$h_{nom} \ge$	[mm]	49	56	62	82	102	121
Effective anchorage depth	$h_{ef} \ge$	[mm]	40	44	48	65	82	100
Reduced anchorage depth								
Depth of drill hole	$h_{1,red} \ge$	[mm]	45	55	65	75	95	110
Embedment depth	$h_{nom,red} \ge$	[mm]	39	47	56	67	84	99
Effective anchorage depth	$h_{\text{ef,red}} \geq$	[mm]	30	35	42	50	64	78


Wedge Anchor ESSVE ESA7

Intended use

Installation data, steel zinc plated

Anchor size			M6	M8	M10	M12	M16	M20
Nominal drill hole diameter	d ₀ =	[mm]	6	8	10	12	16	20
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
Installation torque	$T_{inst} =$	[Nm]	6	15	25	50	100	160
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	9	12	14	18	22
Standard anchorage depth								
Depth of drill hole	$h_1 \geq$	[mm]	55	65	70	90	110	130
Embedment depth	$h_{\text{nom}} \geq$	[mm]	49	56	62	81	99	121
Effective anchorage depth	$h_{ef} \geq$	[mm]	40	44	48	65	80	100
Reduced anchorage depth								
Depth of drill hole	$h_{1,red} \geq$	[mm]	45	55	65	75	95	110
Embedment depth	$h_{\text{nom,red}} \ge$	[mm]	39	47	56	66	83	99
Effective anchorage depth	h _{ef.red} ≥	[mm]	30	35	42	50	64	78

Wedge Anchor ESSVE ESA7

Intended use

Installation data, stainless steel A4/HCR

Annex B3

Table B3: Minimum spacings and edge distances, steel zinc plated

Anchor size			M6	M8	M10	M12	M16	M20
Standard anchorage depth h _{ef}								
Minimum member thickness	h _{min}	[mm]	100	100	100	130	170	200
Minimum spacing	S _{min}	[mm]	35	40	55	75	90	105
Minimum edge distance	C _{min}	[mm]	40	45	65	90	105	125
Reduced anchorage depth h _{ef,red}								
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	S _{min}	[mm]	35	40	55	100	100	140
Minimum edge distance	C _{min}	[mm]	40	45	65	100	100	140

Table B4: Minimum spacings and edge distances, stainless steel A4/HCR

Anchor size			M6	M8	M10	M12	M16	M20
Standard anchorage depth h _{ef}								
Minimum member thickness	h _{min}	[mm]	100	100	100	130	160	200
Minimum spacing	S _{min}	[mm]	35	35	45	60	80	100
	for $c \ge$	[mm]	40	65	70	100	120	150
Minimum edge distance	C _{min}	[mm]	35	45	55	70	80	100
	for $s \ge$	[mm]	60	110	80	100	140	180
Reduced anchorage depth h _{ef,red}								
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	S _{min}	[mm]	35	60	55	100	110	140
Minimum edge distance	C _{min}	[mm]	40	60	65	100	110	140

Intermediate values by linear interpolation.

Wedge Anchor ESSVE ESA7

Intended use Minimum spacings and edge distances Annex B4

	Drill hole perpendicular to concrete surface, positioning of the drill holes without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
	Blow out dust.
	Check position of nut.
	Drive in anchor, such that h_{et} or $h_{et,red}$ is met. This is ensured, if the thickness of fixture is not greater than the maximum thickness of fixture marked on the anchor in accordance with Annex A2 and A3.
5 Tinst	Apply installation torque T _{inst} by using calibrated torque wrench.
Wedge Anchor ESSVE ES	SA7 Annex B5

Deutsches Institut für Bautechnik

Anchor size			M6	M8	M10	M12	M16	M20
Installation safety factor	γinst	[-]			1	,0		
Steel failure								
Characteristic resistance	N _{Rk,s}	[kN]	8,7	15,3	26	35	65	107
Partial safety factor	γMs	[-]		1	,5		1	,6
Pull-out								
Standard anchorage depth hef			-				-	
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	12	16	1)	1)	1)
Reduced anchorage depth hef,red								
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	6 ²⁾	1) 2)	1)	1)	1)	1)
Increasing factor for $N_{Rk,p}$	Ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$					
Splitting								
Standard anchorage depth hef								
Spacing	S _{cr,sp}	[mm]	160	220	240	330	410	500
Edge distance	C _{cr,sp}	[mm]	80	110	120	165	205	250
Reduced anchorage depth $h_{ef,red}$			_		-			
Spacing	S _{cr,sp}	[mm]	180	210	230	240	320	400
Edge distance	C _{cr,sp}	[mm]	90	105	115	120	160	200
Concrete cone failure								
Standard anchorage depth hef								
Effective anchorage depth	$h_{\text{ef}} \geq$	[mm]	40	44	48	65	82	100
Spacing	S _{cr,N}	[mm]			3	h _{ef}		
Edge distance	C _{cr,N}	[mm]			1,5	h _{ef}		
Reduced anchorage depth $h_{ef,red}$								
Effective anchorage depth	$h_{\text{ef,red}} \geq$	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Spacing	S _{cr,N}	[mm]			3 h	ef,red		
Edge distance	C _{cr,N}	[mm]			1,5	ו _{ef,red}		
Factor for k ₁	k _{ucr.N}	[-]			1.	1,0		

²⁾ Use restricted to anchorages of indeterminate structural components

Wedge Anchor ESSVE ESA7

Performance

Characteristic values for tension loads, steel zinc plated

Anchor size			M6	M8	M10	M12	M16	M20
Installation safety factor	γinst	[-]			. 1	,0		
Steel failure								
Characteristic resistance	N _{Rk,s}	[kN]	10	18	30	44	88	134
Partial safety factor	γMs	[-]	10	10	1,50		00	1,68
Pull-out	11/15				1,00			.,00
Standard anchorage depth h _{ef}								
Characteristic resistance in							1)	1)
non-cracked concrete C20/25	N _{Rk,p}	[kN]	7,5	12	16	25	')	1)
Reduced anchorage depth hef,red								
Characteristic resistance in	N	TL-NI1	6 ²⁾	9 ²⁾	10	1)	1)	1)
non-cracked concrete C20/25	N _{Rk,p}	[kN]	6	9 '	12	,	, ,	,
Splitting								
Standard anchorage depth hef								
The higher one of the decisive resistances	of Case 1 and	d Case 2 is	s applicable.					
Case 1								
Characteristic resistance in								
non-cracked concrete C20/25	N ⁰ Rk,sp	[kN]	6	9	12	20	30	40
Spacing	S _{cr,sp}	[mm]			3	h _{ef}		
Edge distance	C _{cr,sp}	[mm]				5 h _{ef}		
Case 2								
Characteristic resistance in	N10	TL-NIT	7.5	10	10	05	1)	1)
non-cracked concrete C20/25	N ⁰ Rk,sp	[kN]	7,5	12	16	25	,	,
Spacing	S _{cr,sp}	[mm]	160	220	240	340	410	560
Edge distance	C _{cr,sp}	[mm]	80	110	120	170	205	280
Reduced anchorage depth hef,red								
Characteristic resistance	N ⁰ Rk,sp	[kN]	6 ²⁾	9 ²⁾	12	1)	1)	1)
in non-cracked concrete C20/25			100	010		000	000	400
Spacing	S _{cr,sp}	[mm]	180	210	230	300	320	400
Edge distance	C _{cr,sp}	[mm]	90	105	115	150	160	200
Increasing factor for $N_{\text{Rk},p}$ and $N^{\scriptscriptstyle 0}{}_{\text{Rk},\text{sp}}$	Ψc	[-]			$\left(\frac{f_{cl}}{2}\right)$	$\left(\frac{k}{0}\right)^{0,5}$		
Concrete cone failure								
Standard anchorage depth					10			100
Effective anchorage depth	h _{ef}	[mm]	40	44	48	65	80	100
Spacing Edge distance	S _{cr,N}	[mm] [mm]				h _{ef} 5 h _{ef}		
Reduced anchorage depth	C _{cr,N}	i fuund l			1,5	ret		
Effective anchorage depth	h _{ef,red}	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Spacing	S _{cr,N}	[mm]	00	00		h _{ef}		,0
Edge distance	C _{cr,N}	[mm]			1.5	5 h _{ef}		
Factor for k_1		[-]				1,0		
Pactor for K ₁ Pullout failure is not decisive.	k _{ucr,N}	[-]			1	1,0		

Wedge Anchor ESSVE ESA7

Performance

Characteristic values for tension loads, stainless steel A4/HCR

Deutsches Institut für Bautechnik

Anchor size			M6	M8	M10	M12	M16	M20
Installation safety factor	γinst	[-]				1,0		
Steel failure without lever arm								
Characteristic shear resistance	$V_{Rk.s}$	[kN]	5	11	17	25	44	69
Factor for ductility	k 7	[-]	1,0					
Steel failure with lever arm								
Characteristic resistance	M ⁰ _{Rk.s}	[Nm]	9	23	45	78	186	363
Partial safety factor for $V_{Rk,s}$ and $M^0{}_{Rk,s}$	γMs	[-]		1	,25		1,33	
Concrete pry-out failure								
Factor for h _{ef}	k ₈	[-]	1,0	1,0	1,0	2,0	2,0	2,0
Factor for h _{ef,red}	k ₈	[-]	1,0 ¹⁾	1,0 ¹⁾	1,0	1,0	2,0	2,0
Concrete edge failure								
Effective length of anchor in shear loading for h _{ef}	l _f	[mm]	40	44	48	65	82	100
Effective length of anchor in shear loading for h _{ef.red}	$I_{\rm f,red}$	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78
Outside diameter of anchor	d _{nom}	[mm]	6	8	10	12	16	20

¹⁾ Use restricted to anchorages of indeterminate structural components

Table C4: Characteristic values for shear loads, stainless steel A4/HCR

Anchor Size			M6	M8	M10	M12	M16	M20
Installation safety factor	γinst	[-]			1	,0		
Steel failure without lever arm								
Characteristic shear resistance	$V_{Rk,s}$	[kN]	7	12	19	27	50	86
Factor for ductility	k ₇	[-]			1	,0		
Steel failure with lever arm								
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]	10	24	49	85	199	454
Partial safety factor for $V_{Rk,s}$ and $M^0_{Rk,s}$	γMs	[-]	1,25					1,4
Concrete pry-out failure								
Factor for h _{ef}	k ₈	[-]	1,0	1,0	1,0	2,0	2,0	2,0
Factor for h _{ef,red}	k ₈	[-]	1,0 ¹⁾	1,0 ¹⁾	1,0	1,0	2,0	2,0
Concrete edge failure								
Effective length of anchor in shear loading with $\ensuremath{h_{ef}}$	l _f	[mm]	40	44	48	65	80	100
Effective length of anchor in shear loading with $h_{ef,red}$	I _{f,red}	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78
Outside diameter of anchor	d _{nom}	[mm]	6	8	10	12	16	20

¹⁾ Use restricted to anchorages of indeterminate structural components

Wedge Anchor ESSVE ESA7

Performance Characteristic values for shear loads

Table C5: Displacements u	Table C5: Displacements under tension loads, steel zinc plated												
Anchor size			M6	M8	M10	M12	M16	M20					
Standard anchorage depth													
Tension load	Ν	[kN]	4,3	5,8	7,6	11,9	16,7	23,8					
Displacement	δ_{N0}	[mm]	0,4			0,5							
Displacement	$\delta_{N\infty}$	[mm]	0,7			2,3							
Reduced anchorage depth													
Tension load	Ν	[kN]	2,9	5,0	6,5	8,5	12,3	16,6					
Displacement	δ_{N0}	[mm]	0,3			0,4	-						
Displacement	$\delta_{N_{\infty}}$	[mm]	0,6			1,8							

Table C6: Displacements under tension loads, stainless steel A4/HCR

Anchor size			M6	M8	M10	M12	M16	M20
Standard anchorage depth								
Tension load	Ν	[kN]	3,6	5,7	7,6	11,9	17,2	24,0
Displacement	δ_{N0}	[mm]	0,7	0,9	0,5	0,6	0,9	2,1
Displacement	δ_{N_∞}	[mm]	1,8					
Reduced anchorage depth								
Tension load	Ν	[kN]	2,9	4,3	5,7	8,5	12,3	16,6
Dianlagoment	δ_{N0}	[mm]	0,4	0,7	0,4	0,4	0,6	1,5
Displacement	$\delta_{N\infty}$	[mm]			1,3			2,9

Table C7: Displacements under shear loads, steel zinc plated

Anchor size			M6	M8	M10	M12	M16	M20
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Displacement	δ_{V0}	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	$\delta_{V\infty}$	[mm]	2,4	2,2	2,4	3,9	4,6	6,6

Table C8: Displacements under shear loads, stainless steel A4/HCR

Anchor Size			M6	M8	M10	M12	M16	M20
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Displacement	δ_{V0}	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
	δ_{V_∞}	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

Wedge Anchor ESSVE ESA7

Performance Displacements