

REGA#DVS Product Specifications

CONSTRUCTION

The **REGA#DVS** is manufactured from steel sheet, powder coated. Standard color white (RAL 9010).

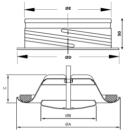
Other color finishes are available to special order quantities. The valve body has a gasket, made of cellular plastic and the control disc, with screw spindle, enables easy regulation and positional locking.

REGULATION AND MEASUREMENTS

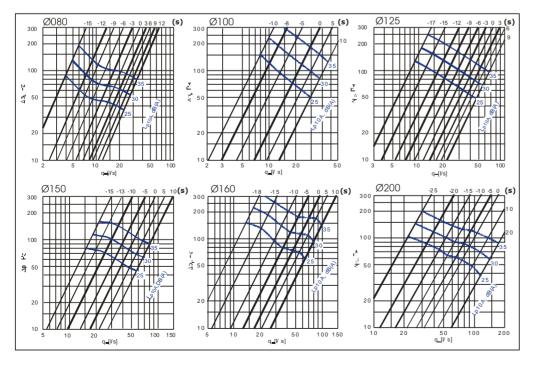
Regulation of airflow is achieved by turning the control disc to change adjustment dimension s (mm). The measurement of airflow is made by a pressure difference measurement with a separate measuring tube. Refer to airflow measurement diagrams for information.

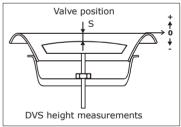
Packaging

The REGA#DVS is packed per 7 Pieces in a box.


Features & Benefits

Powder coated valve *including* fixing collar REGA#DVS is an exhaust valve suitable for houses, offices etc.


- Good adjusting features
- Low noise level
- Quick and easy to install
- Airflow easy to measure


DIMENSIONS IN MILLIMETRES

REGA#DVS	Ø 080	Ø 100	Ø 125	Ø150	Ø 160	Ø200
A	116	140	170	202	202	254
В	60	75	99	119	119	157
C	40	40	46	54	54	64
Weight	150 gr	160 gr	230 gr	340 gr	340 gr	510 gr
D	105	125	150	175	185	225
Е	79	99	124	149	159	199
Weight	80 gr	100 gr	120 gr	180 gr	190 gr	240 gr

SOUND POWER LEVEL Lw

	CORRECTION K _{oct} (dB)							
REGA#DVS	DVS Middle frequency by octave band (Hz)							
	125	250	500	1000	2000	4000	8000	
080	1	-2	1	0	-3	-10	-22	
100	5	-2	-3	-3	0	-8	-20	
125	-6	0	0	-3	0	-13	-25	
150	-6	-5	-4	0	-1	-13	-28	
160	1	-1	-3	1	-2	-15	-32	
200	3	1	-1	1	-4	-12	-25	
Tol.+/-	3	2	2	2	2	2	3	

Sound power levels by octave bands are obtained by adding to total sound pressure level

 L_{p10A} , dB(A) the corrections K_{oct} presented in the table according to the following formula:

$$L_{Woct} = L_{p10A} + K_{oct}$$

Correction K_{oct} is average value in range of use of **REGA#DVS** unit.

DEFINITIONS

DELIMITATION		
$q_{\rm v}$	air volume	(m^3/h)
$\triangle \mathbf{p_{t^{}}}$	total pressure drop	(Pa)
L_{p10A}	sound pressure level with 4 dB room attenuation (10 m ² sab)	[dB(A)]
L_{p10A} L_{Woct}	sound power level by octave bands	(dB)
$\triangle \mathbf{L}$	sound attenuation	(dB)
K _{oct}	correction	(dB)

REGA#	Adjustment s (mm)	SOUND ATTENUATION Δ L							
DVS		Middle frequency by octave band (Hz)							
DVS		63	125	250	500	1000	2000	4000	8000
	-9	24	20	14	10	8	5	5	6
080	0	24	19	13	9	6	3	4	5
	12	24	19	13	9	5	2	3	4
	-10	23	19	14	12	11	10	13	14
100	0	23	16	11	8	7	6	9	8
	10	23	16	11	7	5	4	7	8
	-17	20	19	13	10	7	7	11	14
125	0	18	16	10	6	4	4	5	8
	9	19	16	9	6	3	3	5	7
	-15	21	14	11	8	6	6	8	8
150	0	20	13	9	6	4	4	7	6
	10	16	14	9	4	3	2	7	7
	-15	18	13	11	7	6	6	8	8
160	-10	18	13	10	6	5	5	7	7
	0	17	13	9	5	4	3	6	6
	-15	17	12	8	7	6	7	8	9
200	-5	17	11	7	6	5	6	6	8
	0	17	11	7	5	5	6	6	7
Tol. ±	6	3	2	2	2	2	2	2	3

The average sound attenuation ΔL from duct to room including the end reflection of the connecting duct in ceiling installation is obtained in the table above.